CERAMIC CORDIERITE/CEO2 FOR PHOTOCATALYTIC REDUCTION OF CO2

1 ŠIHOR Marcel
Co-authors:
1 VALÁŠKOVÁ Marta 1 EDELMANNOVÁ Miroslava 2 CHLEBÍKOVÁ Lucie 1 KOČÍ Kamila
Institutions:
1 VSB - Technical University of Ostrava, Institute of Environmental Technology, Ostrava, Czech Republic, EU, marcel.sihor@vsb.cz
2 VSB - Technical University of Ostrava, Nanotechnology Centre, Ostrava, Czech Republic, EU
Conference:
11th International Conference on Nanomaterials - Research & Application, Hotel Voronez I, Brno, Czech Republic, EU, October 16th - 18th 2019
Proceedings:
Proceedings 11th International Conference on Nanomaterials - Research & Application
Pages:
175-179
ISBN:
978-80-87294-95-6
ISSN:
2694-930X
Published:
1st April 2020
Proceedings of the conference have been sent to Web of Science and Scopus for evaluation and potential indexing.
Metrics:
50 views / 20 downloads
Abstract

Photocatalytic reduction of carbon dioxide (CO2) is a challenging reaction attracting a lot of attention. Finding a novel, efficient and relatively cheap photocatalyst is the goal of many research teams all over the world. Cordierite ceramic materials containing ceria (CeO2) nanoparticles show interesting photocatalytic properties. Five ceramic cordierite/CeO2 samples prepared from talc, kaolin, vermiculite/CeO2 nanocomposite with various amounts of CeO2 were investigated for the photocatalytic reduction of CeO2. Samples were prepared and characterized by X-ray diffraction method, specific surface area and nanoparticles CeO2 using transmission electron microscope. The photocatalytic activity of all samples was investigated in batch reactor irradiated by 8 W Hg lamps (254 nm). The main products of the photocatalytic reduction of CO2 were methane and carbon monoxide. Hydrogen was also detected, however, it is a product of water splitting, not CO2 reduction. Nevertheless, the presence of water is necessary for the reaction as water serves as hydrogen source. The cordierite/CeO2 samples containing CeO2 from 4 to 9 wt.% showed higher activity of photocatalytic reduction of CO2 than commercial catalyst TiO2 P25. The finding that lower CeO2 amount of 5.1 and 3.9 wt. % produced the highest photocatalytic activity is in an agreement with the literary results.

Keywords: Cordierite ceramics, CO2, photocatalytic reduction
Scroll to Top