MICRO-COMPUTED TOMOGRAPHY OF INTERCONNECTED -TCP – MG COMPOSITES OBTAINED BY CURRENT ASSISTED METAL INFILTRATION

1,2 CASAS-LUNA Mariano
Co-authors:
1 TKACHENKO Serhii 1 KLAKURKOVÁ Lenka 1 TORRES Jorge 1 KAREŠ Martin 1 KAISER Jozef
Institution:
1 Central European Institute of Technology - Brno University of Technology, Brno, Czech Republic, EU, mariano.casasluna@ceitec.vutbr.cz
Conference:
26th International Conference on Metallurgy and Materials, Hotel Voronez I, Brno, Czech Republic, EU, May 24th - 26th 2017
Proceedings:
Proceedings 26th International Conference on Metallurgy and Materials
Pages:
1669-1675
ISBN:
978-80-87294-79-6
ISSN:
2694-9296
Published:
9th January 2018
Proceedings of the conference were published in Web of Science and Scopus.
Metrics:
19 views / 3 downloads
Abstract

Magnesium and calcium phosphates composites are promising biomaterials to create biodegradable load-bearing implants for bone regeneration. The present investigation is focused on the design of an interpenetrated magnesium – tricalcium phosphate (Mg-TCP) composite. In this study, TCP preforms were 3D-printed with a tip of 250 µm in aperture. Final preforms with parallel grids and internal pores of 150, 350, 500 and 1000 µm were obtained and sintered at 1100 °C for 5h. Later, the infiltration with commercial pure Mg was performed using a novel Current Assisted Metal Infiltration (CAMI) technique, which allows an effective and fast infiltration of brittle ceramic preforms with molten metal. Fast melting and final solidification of the Mg-TCP composite were achieved with the assistance of a pulsed electrical current as heating resource. The effect of pore size on the infiltration was analysed by X-ray computed microtomography (μCT). Virtual tomographic reconstructions were used to observe the components distribution and the remaining porosity of the composite after the infiltration. Results show a good penetration of the metal into the TCP preforms. Nevertheless, fracture of some TCP structures after the infiltration was observed, mainly in the preforms with a pore size of 150 µm. Some porosity after infiltration was registered, however, it does not exceed 5 % of the total volume of the specimen.

Keywords: Magnesium, tricalcium phosphate, current assisted metal infiltration, micro-computed tomography
Scroll to Top