ELECTRICAL CONDUCTIVE AND GAS SENSITIVE TRANSPARENT TIN OXIDE THIN FILMS PREPARED BY ATMOSPHERIC PRESSURE PECVD

1 GERULLIS Sven
Co-authors:
1 BEIER Oliver 1 PFUCH Andreas 1 RAUGUST Marc 1 KRETZSCHMAR Björn Sten Mark 1 GRUENLER Bernd
Institution:
1 INNOVENT e.V. Technology Development Jena, Pruessingstrasse 27B, D-07745 Jena, Germany, EU, ob@innovent-jena.de
Conference:
10th International Conference on Nanomaterials - Research & Application, Hotel Voronez I, Brno, Czech Republic, EU, October 17th - 19th 2018
Proceedings:
Proceedings 10th International Conference on Nanomaterials - Research & Application
Pages:
181-186
ISBN:
978-80-87294-89-5
ISSN:
2694-930X
Published:
28th February 2019
Proceedings of the conference were published in Web of Science and Scopus.
Metrics:
4 views
Abstract

In this contribution, the deposition of tin oxide thin films and the resulting layer properties are investigated. An atmospheric pressure PECVD process using a non-thermal plasma jet was applied, creating the coatings on silicon and glass slides. For a highly reactive oxygen atmosphere, the plasma process was driven with air as working gas. The precursor substance tetra-n-butyltin was provided as an aerosol towards the active plasma zone and is further converted to form the ~100 nm thin layers. Structural, electrical and gas sensing properties were determined of the undoped SnOx layers, deposited at substrate temperatures between 20°C and 500°C.With increasing substrate temperature a decrease in film thickness and roughness of the films could be observed. In general, the films consists of a dense part near the substrate surface and a more porous structure on top. At 300 °C the lowest electrical resistivity with about 7.2 × 10-2 Ωcm occurs in 4-point probe measurements. Experiments for the gas sensing characteristics revealed an electrical response to different atmospheres (water vapour, aqueous ammonia solution) already at elevated measuring temperatures of 150°C. Ammonia concentrations until 25% were tested. The thin films are showing distinct properties in gas selectivity between the changing atmospheres, gas sensitivity during ammonia interaction as well as recurring reversibility after a surface recovery step with pressurized air. So, tin oxide coatings created by atmospheric pressure PECVD are showing already in its undoped state and without further layer post-treatments high application potential.

Keywords: Atmospheric pressure PECVD, plasma jet, tin oxide, transparent conductive oxide (TCO), gas sensor
Scroll to Top