GRAIN REFINEMENT IN HYPEREUTECTOID STEEL BY SEMI-SOLID PROCESSING FOLLOWED BY MECHANICAL WORKING

1 RUBEŠOVÁ Kateřina
Co-authors:
1 PEKOVIĆ Michal 1 JIRKOVÁ Hana 2 HRADIL David
Institutions:
1 University of West Bohemia, Regional Technology Institute, Faculty of Mechanical Engineering, Pilsen, Czech Republic, EU, krubesov@rti.zcu.cz
2 COMTES FHT a.s., Průmyslová 995, Dobřany, 334 41, Czech Republic, EU, david.hradil@comtesfht.cz
Conference:
29th International Conference on Metallurgy and Materials, Brno, Czech Republic, EU, May 20 - 22, 2020
Proceedings:
Proceedings 29th International Conference on Metallurgy and Materials
Pages:
228-233
ISBN:
978-80-87294-97-0
ISSN:
2694-9296
Published:
27th July 2020
Proceedings of the conference were published in Web of Science and Scopus.
Metrics:
561 views / 317 downloads
Abstract

Research into new forming methods has yielded new techniques of altering the microstructure in hypereutectoid steels. An innovative approach to processing can lead to improved mechanical properties thanks to elimination of problematic and undesirable sharp-edged carbides which are very difficult to dissolve. This paper explores an unconventional method of refining the grain in and removing primary sharp-edged chromium carbides from X210Cr12 hypereutectoid tool steel.The process route applied to input stock comprised semi-solid processing followed by forming below the solidus temperature. The goal of the study was to determine the impact of the applied strain on microstructural evolution and grain refinement. In these experiments, the material was heated to above the solidus temperature and then either cooled without any other intervention or cooled to a forming temperature and then formed using five to ten deformation steps. Higher number of deformation steps led to much finer microstructure and higher hardness which increased from the initial 673 HV10 to 873 HV10. This procedure produced a very fine microstructure with grains of approximately 1 µm and a fine dispersion of chromium carbides. Since the resulting material was very hard and brittle, it had to be tempered. Tempering was performed once at 300°C for 1 hour or twice at 530°C, for 1 hour in each operation.

Keywords: Metallurgy, steel, properties, applications, testing methods

© This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Scroll to Top