TWO-STAGE FLUIDIZED-BED SYSTEMS FOR THE METAL POWDER PRODUCTIONS OF MOLYBDENUM AND NICKEL

1 KIM Yong Ha
Co-authors:
1 KIM Hang Goo
Institution:
1 Department of Chemical Engineering, Pukyong National University, 365 Sinseon-ro, Nam-gu, Busan, Republic of Korea, yhkim@pknu.ac.kr
Conference:
26th International Conference on Metallurgy and Materials, Hotel Voronez I, Brno, Czech Republic, EU, May 24th - 26th 2017
Proceedings:
Proceedings 26th International Conference on Metallurgy and Materials
Pages:
1763-1768
ISBN:
978-80-87294-79-6
ISSN:
2694-9296
Published:
9th January 2018
Proceedings of the conference were published in Web of Science and Scopus.
Metrics:
24 views / 4 downloads
Abstract

As a pyro-metallurgical process, a fluidized-bed process can be employed because of its high transfer rates of heat and mass between gas and powder particles. The metal powder production usually needs to be divided to a few steps to obtain an efficiency of stepwise control or to solve some operational difficulties. In these cases, a multi-stage fluidized-bed system can be used to meet different operating conditions of steps. Hydrogen reduction processes of oxides by a two-stage fluidized-bed reactor are investigated in this study for the metal powder productions of molybdenum and nickel. For the molybdenum powder production, before the hydrogen reduction, a serial use of a single fluidized-bed reactor for the calcination of an ammonium molybdate to make a molybdenum oxide, is also investigated. As results, optimal or desirable operational conditions (temperature, residence time and gas consumption rate) for each fluidized-bed step are provided, as well as the process conceptions of the hydrogen reduction by the two-stage fluidized-bed reactors.

Keywords: Fluidized-bed, multi-stage, molybdenum oxide, nickel oxide, hydrogen reduction.
Scroll to Top