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Abstract 

In this paper we present a comparative study of the magneto-optical properties of quasi-two-dimensional 

electrons in a graphene-like semiconductor superlattice composed of circular and elliptical quantum dots. The 

effect of transverse magnetic field on the band structure and absorption coefficient of the considered structures 

is studied. To this end a complete set of orthogonal basis functions is constructed in the symmetric gauge of 

the vector potential. This basis reflects both the periodicity of the system and magnetic phase effects due to 

the translations between the sites of the superlattice. Our calculations indicate on a topological change in the 

miniband structure due to the ellipticity of the quantum dots, and non-trivial modifications of the electron energy 

dispersion surfaces in the reciprocal space with the change of the number of magnetic flux quanta through the 

unit cell of the superlattice. The obtained results indicate the opportunity for an effective control of the magnetic 

and optical characteristics of honeycomb arrays of QDs through geometry effects and external magnetic field.  

Keywords: Artificial graphene, Magnetic field, Energy dispersion, Absorption coefficient 

INTRODUCTION 

The unique properties of graphene, which are a direct consequence of its two-dimensional (2D) lattice with 

underlying triangular symmetry, have attracted significant interest in recent two decades [1]. Advanced 

methods, such as atom-by-atom assembly [2], optical trapping of ultracold atoms in crystals of standing light 

waves [3], and nanopatterning of 2D electron gas in semiconductors [4], make it possible to design and 

fabricate artificial honeycomb lattices or artificial graphene. In artificial graphene composed of semiconductor 

quantum dots (QD) there are additional possibilities of band structure manipulation via variations of the QD 

shapes, sizes and external factors such as transverse magnetic and in-plane electric fields [5]. The description 

of the electron motion in graphene subjected to a transverse homogeneous magnetic field is usually based on 

the Peierls substitution in tight-binding models or the Dirac Hamiltonian [6]. This approach relies on the 

assumption that the magnetic field affects the tunneling of an electron through the sites of the graphene lattice 

only by adding corresponding magnetic phases to the hopping parameters. The Dirac Hamiltonian is applicable 

when there is only one conducting electron in each site of the lattice, leading to the emergence of relativistic 

electrons near the band's touching points. These assumptions, while well justified for graphene, may not hold 

for artificial graphene-like semiconductor structures. To overcome this obstacle, we develop our theoretical 

study using the basis functions proposed initially by Ferrari [7] and subsequently used by others. This approach 

allows us to take into account the effect of the magnetic field on the degree of confinement of electrons in each 

QD, as well as on the tunneling of 2D electrons between different QDs [8]. Based on this method, we 

investigate the electronic states and the absorption coefficient of honeycomb artificial graphene-like lattices 

composed of cylindrical and elliptical QDs. We explore the effect of structural symmetry-breaking on energy 

dispersions and the optical response of the lattice. Our calculations indicate a topological change in the 

miniband structure due to the ellipticity of the QD and non-trivial modifications of the electron energy dispersion 
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surfaces in reciprocal space with the change of the number of magnetic flux quanta through the unit cell (UC) 

of the superlattice (SL). It is shown that the magnetic field dramatically alters the band structure and, 

consequently, the optical absorption spectrum of the lattice. The obtained results indicate the opportunity for 

effective manipulation of the optical characteristics of honeycomb arrays of QDs through their geometry and 

external magnetic field.  

1․ THEORETICAL FRAMEWORK 

We consider a 2D lattice composed of planar QDs exposed to a transverse homogeneous magnetic field with 

induction 𝐵. The one-electron Hamiltonian of such a system in the effective mass approximation is 

𝐻 = 𝐻0 + 𝑉(𝑟)                                                                                                                                                                                       (1) 

where  

𝐻0 =
1

2𝑚
(𝒑 +
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𝑐
)
2

                                                                                                                                                                             (2) 

and 𝑉(𝑟) = 𝑉(𝒓 + 𝑛1𝒂1 + 𝑛2𝒂2) is the periodic potential of the SL with primitive vectors 𝒂𝟏 and 𝒂𝟐, and with 

integer 𝑛1 and 𝑛2. 𝒑 = −𝑖ℏ𝜵 is the momentum operator, ℏ is the reduced Planck’s constant, 𝑚 is the effective 

mass, and 𝑐 is the speed of light. We assume that the SL consists of circular or elliptical QDs (see Figure 1) 

with a rectangular potential profile. Namely, 𝑣(𝒓) = 𝑣0 (𝑣0 < 0) inside each QD and 𝑣(𝒓) = 0 in the surrounding 

medium. For the symmetric gauge of the vector potential: 𝐴 = (𝐵 2⁄ )(−𝑦, 𝑥)the eigenfunctions of the 

Hamiltonian (2) are 
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where 𝑙𝐵 = (𝑐 ℏ 𝑒𝐵⁄ )1 2⁄  is the magnetic length, and 𝑛𝐿 indicates the number of the Landau level [7,9]. It is well 

known that the translation operator 𝑇(𝑹) = exp (𝑖𝑹𝒑/ℏ) with 𝑹 =  𝑛1𝒂𝟏 + 𝑛2𝒂𝟐 does not commute with the 

Hamiltonian (2). Instead, the so-called magnetotranslation operator 𝑆(𝑹) = 𝑒𝑥𝑝((𝑖 2𝑙𝐵
2⁄ )(𝑹 × 𝒓)𝑒̂𝑧)𝑇(𝑹) [7,10] 

which commutes with the Hamiltonian (2) can be used for construction of a complete and orthogonal set of 

basis functions for description of the motion of an electron with the Hamiltonian (1). On the other hand, 

magnetotranslation operators for any two lattice vectors 𝑹𝟏 and 𝑹𝟐 commute in the only case when there is an 

integer number of magnetic flux quanta in the area |𝑹𝟏 × 𝑹𝟐|: [𝑆(𝑹𝟏), 𝑆(𝑹𝟐)] = 0, 𝑖𝑓|𝑹𝟏 × 𝑹𝟐| = 2𝜋𝑢𝑙𝐵
2 , where 

𝑢 is an integer. If one expresses the magnetic flux per UC of the SL as 𝛷 𝛷0⁄ = 𝑝𝑞 ℎ1ℎ2⁄ , where 𝑝, 𝑞, ℎ1 and ℎ2 

are integers, the lattice vectors satisfying this condition should be expressed as follows: 𝑹𝟏 = ℎ1𝒂𝟏 and 𝑹𝟐 =

ℎ2𝒂𝟐. As is shown in [8] a complete set of basis functions can be constructed out using the primitive 

magnetotranslations 𝑆(𝒄) and 𝑆(𝒅) with 𝒄 = 𝑹𝟏 𝑝⁄  and 𝒅 = 𝑹𝟐 𝑝⁄ : 

𝜙𝑛𝐿
𝑛1,𝑛2(𝑟) = (𝑝𝑞)−1 2⁄ ∑ [𝑆(𝒄)𝑒−𝑖𝜇]𝑚

∞

𝑚,𝑛=−∞

[𝑆(𝒅)𝑒−𝑖𝑣]𝑛𝜙𝑛𝐿(𝒓),                                                                                                (4) 

where 

𝜇 = (1 𝑝⁄ )(𝜃1 + 2𝜋𝑛1), 𝑛1 = 0,… , 𝑝 − 1,                                                                                                                                       (5) 

𝑣 = (1 𝑞⁄ )(𝜃2 + 2𝜋𝑛2), 𝑛2 = 0,… , 𝑝 − 1, 

𝜃1 and 𝜃2 indicate points in the magnetic first Brillouine zone (FBZ). It has been shown that the norm of the 

wave function (6), is nonzero when (𝜇, 𝑣) ≠ (𝜋, 𝜋) [8,11]. The periodic potential of SL can be expanded in a 

Fourier series with reciprocal lattice vectors 𝑮 = 𝐺1𝒈𝟏 + 𝐺2𝒈𝟐, where 𝒈𝟏 and 𝒈𝟐, are the primitive reciprocal 

vectors and 𝐺1 and 𝐺2 are integers. The Fourier transform of the honeycomb lattice potential with distance 𝑎 

between QDs and with the area of UC 𝑠0 can be expressed as follows: 
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for the SL of circular QDs with radius 𝑟𝑑, and 
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for the SL of elliptical QDs, where 𝑟𝑒 = 𝑟𝑠 𝑟𝑙 √𝑟𝑠
2𝑐𝑜𝑠2𝜙 + 𝑟𝑙

2𝑠𝑖𝑛2𝜙⁄ , 𝑟𝑠(𝑙)is the small (large) semi-axis of the QD. 

The matrix elements of the exponent in the Fourier expansion of the potential are non-zero if: 

𝐺1ℎ1 + 𝑛1 − 𝑛1
′ = 𝑀𝑝                                                                                                                                                                           (8) 

𝐺2ℎ2 + 𝑛2 − 𝑛2
′ = 𝑁𝑞, 

with 𝑀 and 𝑁 integers [7,10]. 

The absorption coefficient in the dipole approximation can be expressed as follows: 

𝛼(𝜔) = 𝛼0∑|⟨𝜓𝑓|𝜀𝑝|𝜓𝑖⟩|
2
𝛿(𝜀𝑓 − 𝜀𝑖 − ћ𝜔)[𝑓(𝜀𝑖) − 𝑓(𝜀𝑓)]

𝑖,𝑓

,                                                                                                 (9) 

where 𝛼0 = 4𝜋𝑒2 ћ 𝑛𝑐⁄ 𝑚0
2𝐿𝑧, 𝑚0 stands for the free electron mass, ⟨𝜓𝑓|𝜀𝑝|𝜓𝑖⟩ is the transition matrix element, 

𝑓(𝜀𝑗) is the Fermi-Dirac distribution function and 𝐿𝑧 is the effective width of the absorbing medium.  

2․ RESULTS AND DISCUSSION  

 

Figure 2 shows the dispersion surfaces for circular (a) and elliptical (b) QDs for the first two minibands in the 

absence of magnetic field. In the case of circular QDs (Figure 2a), the minibands have touching points with 

degenerate energy. The energy dispersion around these points is linear, which indicates on the relativistic 

behavior of electron. The symmetry of the dispersion surfaces in this case is hexagonal. In the case of elliptical 

Figure 1 The schematic view of the 2D SLs 

of circular (the left half of the figure) and 

elliptical (the right half of the figure) QDs. 

Figure 2 Electron energy dispersion surfaces 

in the absence of external magnetic field for 

SLs composed of circular (upper figure) and 

elliptical (lower figure) QDs. 
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QDs, the hexagonal symmetry is broken. As a result a finite band gap appears between the minibands, which 

significantly affects the optical characteristics of the system. 

 

Figure 3 represents the density plots of the dispersion surfaces for a SL composed of circular QDs. The 

considered values of the magnetic flux per UC are 𝜙 𝜙0 = 1, 3 2⁄⁄  and 2, respectively for the left, the middle 

and the right columns in the figure. The upper row of the figure corresponds to the 1st, while the lower row is 

for the 2nd miniband. First of all it is obvious that the dispersion surfaces retain their triangular symmetry when 

there is integer number of magnetic flux quanta per UC (the left and the right columns of the Figure 3). 

However, the fractional number of flux quanta per UC leads to the destruction of the triangular symmetry. For 

𝜙 𝜙0 = 3 2⁄⁄  one of the lattice vectors of the system with magnetic field is the twice of the original lattice vector, 

which leads to the contraction of the period in the reciprocal space two times (see the middle column of 

Figure 3). Another interesting phenomenon is the shift of the positions in the FBZ of maxima and minima of 

the dispersion surfaces corresponding to even and odd numbers of flux quanta per UC with regard to each 

other In all the cases with non-zero magnetic field a finite gap between the minibands is opened, whic is a 

result of the magnetic-phase interference between the states localized in two QDs in the same UC. 

In Figure 4 the same as in Figure 3, but for a SL composed of elliptical QDs is presented. In this case the SL 

has a rectangular symmetry, which is not destroyed by the magnetic field when there is an integer number of 

flux per UC. The energy values shown on the legends of the figure indicate on the decrease of the gap between 

the minibands with the increase of the magnetic flux. One can also observe that the rectangular symmetry is 

better expressed for larger integer numbers of magnetic flux per UC (compare the left and the right columns 

of the Figure 4). 

The absorption spectra of the honeycomb lattice composed of circular (solid lines) and elliptical (dotted lines) 

QDs are presented in Figure 5 for the 1 (a), 2 (b) and 3/2 (c) flux quanta per UC. We consider four different 

directions of the photon polarization with regard to 𝑥 axis as is mentioned in the figure. It is obvios that the 

Figure 3 Dispersion surfaces for the first (upper 

row) and the second (lower row) miniband in 

honeycomb SL of circular QDs. The horizontal axis 

in each panel is for and the vertical axis is for. The 

magnetic flux in the unites of flux quantum is and 

for the left, middle and the right columns, 

respectively. The energy is expressed in. 

Figure 4 Dispersion surfaces for the first (upper 

row) and the second (lower row) minibands in 

honeycomb SL of elliptical QDs. The horizontal 

axis in each panel is for and the vertical axis is 

for. The magnetic flux in the unites of flux 

quantum is and for the left, middle and the right 

columns, respectively. 
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photon polarization has a significant effect on the absorption intensity and smaller intensities are observed 

when the polarization has the direction of stronger tunneling between nearest QDs. For 𝜙 𝜙0 = 1⁄  and 

𝜙 𝜙0 = 2⁄  (Figures 5a and 5b) the deviation of the QD geometry from circular one leads to the appearence of 

additional maxima in the absorption specrtum. For 𝜙 𝜙0 = 3 2⁄⁄  the behavior of the curves which correspond 

to different QD geometry are similar but the values of absorption coefficient are strongly different, in contrast 

to the cases shown in Figures 5a and 5b. The comparison of all three Figures shows that the change of the 

magnetic flux per UC of the SL dramatically alters both the absorption intensity and the incident photon energy 

range where the absorption is significant. Note that the absorption intensity varies non-monotonically with the 

increase of the number of magnetic flux quanta per UC.  

 

3. CONCLUSION 

Summarizing, we present a comparative study on electron energy dispersions and the magnetoabsorption of 

artificial graphene-like honeycomb SLs composed of circular and elliptical QDs. We develop our theoretical 

model in the frame of the approach proposed earlier by Ferrari, where a complete orthonormal set of basis 

wave functions is used, which reflects both the SL translational symmetry and the wave function phase-shifts 

due to the transverse magnetic field in the symmetric gauge of the vector potential․ Our calculations indicate a 

topological change in the miniband structure due to the ellipticity of QDs. We observe non-trivial displacements 

in the reciprocal space of the energy dispersion surfaces and transformations in the translational symmetry of 

Figure 5 Dependencies of the absorption coefficient on incident photon energy for different polarizations 

of the incident photon and different values of magnetic flux through the UC of SL for elliptical and circular 

QDs. The solid lines correspond to the case of circular QDs, while the dashed ones are plotted for 

elliptical QDs. 
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the system when passing through different rational values of the number of magnetic flux quanta per UC of 

the SL. The absorption coefficient significantly depends on the number of magnetic flux quanta per UC of the 

SL and on the polarization of incident photon. The deviation of the QDs geometry form a circular one leads to 

qualitative changes in the absorption spectrum for integer numbers of magnetic flux quanta per UC. 

Meanwhyle, for half an integer values of magnetic flux quanta there are almost no qualitative but instead there 

are strong quantitive modifications in the absorprion spectrum. The obtained results indicate the opportunity 

for effective and flexible manipulation of the magnetic and optical characteristics of honeycomb arrays of QDs 

through geometry effects and external magnetic field. 
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