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Abstract  

In recent years the study of mechanical properties using atomic force microscopy (AFM) has become very 

popular. As it uses much lower forces than nanoindentation methods it allows to focus on smaller volumes 

which makes it an excellent tool for the study of thin films and the creation of high-resolution maps. Although 

it gives a quantitative as well as a qualitative analysis some open problems remain in the quantitative aspects. 

One of the problems encountered is related to the stiffness of the AFM cantilever. Most microscopes offer built-

in methods for the calibration of cantilever stiffness. Unfortunately, these are often insufficient from the point 

of view of metrology. Uncertainties and traceability are rarely discussed.  

Alternatively, the stiffness of a cantilever can be determined using a nanoindentation device. This well-known 

method offers simpler uncertainty analysis and traceability. In this contribution we explore the possibilities of 

this method from the metrological point of view. We shall present an uncertainty budget with focus on 

repeatability and we shall also discuss traceability issues. 
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1. INTRODUCTION 

The study of mechanical properties using atomic force microscopy (AFM) has become very popular in recent 

years. While it has become a standard tool for the study of biological samples (e.g. [1-5]), stiffer samples are 

studied less frequently.  

For a quantitative analysis the value of the cantilever spring constant must be known. However, this value is 

not trivial to achieve. The estimates given by probe manufacturers may vary up to hundreds of percent making 

them almost useless for quantitative analysis. Several methods for the calibration of the spring constant have 

been developed, for a review see e.g. [6,7].  AFM instruments usually have some method built-in, often Sader‘s 

method or the thermal vibration method. However, these methods work well only for soft cantilevers, as used 

in biological applications, and are not suitable for stiff cantilevers. Reference cantilevers can be used but are 

often not stiff enough for applications in material sciences. The traceability of these methods is rarely studied 

but is crucial for the quantitative analyses: without traceability the comparison of results between different 

instruments or laboratories is highly questionable. 

One of the methods which seems most promising in terms of traceability is the method proposed by Clifford 

and Seah [8] which uses an indentation device to bend an AFM cantilever. Indentation devices are constructed 

for well-controlled application of load while recording precisely both the applied load and displacement. The 

traceability of the cantilever then follows from the traceability of the load and displacement sensors. 

In this contribution we present a detailed case study of the determination of the spring constant of a stiff AFM 

cantilever. The uncertainty budget of all steps in the analyses is presented, as well as repeatability and 

traceability issues. The applicability of this method for a given cantilever depends also on the ranges of the 
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indentation device. Indentations instead of bending might occur or the limits of the mathematical model this 

method is based on may be reached. Some suggestions how to estimate the impact of these effects are made. 

2. METHODS 

In this work we follow the method described in [8]. We shall briefly present its main idea. It is based on the 

well-known model of the small elastic deformations on an ideal rectangular homogenous beam with a fixed 

end (e.g. [9,10]). Also, the beam is considered massless [9]. In this case the deformation Δz is proportional to 

the applied force F as  

Δz =
𝐿3

3 𝐸 𝐽𝑧
𝐹,               (1) 

where L is the length of the beam, E its Young’s modulus and Jz the moment of inertia about the neutral axis 

(along the length). For a rectangular cross section this is Jz = wt3/12. 

Equation (1) holds for a general position of the load allowing to obtain the stiffness from multiple points by 

fitting the relation 

X = p (
dF

dz
)

−
1

3
+ 𝑋0 .              (2) 

Here X0 is the possible difference between the apparent fixed end and the true position. The stiffness can be 

obtained from this as  

k =
𝑝3

(𝐿−𝑋0)3.               (3) 

Solutions using for large deformations exist in literature as well, see e.g. [11,12]. Unfortunately, it is not possible 

to find a simple relation between deformation and load. Instead, numerical solutions involving inversions of 

elliptic integrals are used [13].  

The procedure in [8] does not take into account the displacement into the cantilever due to indentation. The 

total compliance measured by the indentation device, i.e., the inverse of the derivative of the loading curve, is 

the sum of the compliance of the cantilever and the compliance of contact. Assuming the surface of the 

cantilever is homogenous along its length we can measure the compliance of contact on the fixed part of the 

cantilever. 

Experiments were performed using the Ultra Hardness Nano Tester from Anton Paar. The instrument has 

been calibrated traceably as described in [14]. The resulting linear calibration constants for the force and depth 

sensor have a relative uncertainty of 12 % and 1 %. The optical camera and the mechanical moving stage 

allow placements with an uncertainty approx. 0.5 um. Both were calibrated using a calibration grating. 

One measurement of the cantilever’s spring constant requires the determination of the coordinates of the 

points defined in Figure 1.  

A reference indent I on the fixed part of the cantilever was made in order to align precisely the position of the 

indenter with respect to the optical camera. A set of loading curves was measured at different positions 

X1, …, XN. Further indentations I1, …, IM were performed on the fixed part of the cantilever to assess the 

contact stiffness. In all cases a linear loading, linear unloading scheme was used. For bending we used very 

low maximum loads, usually 50 or 70 µN which are close to the lower limit of our instrument. For indentations 

we used the same values in order to be able to use directly the contact stiffness. For the reference indent we 

used 2 mN, which was one of the lowest values for which the resulting indent could be reliably identified in the 

optical microscope. 
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Figure 1 Plan of the measuring points on the cantilever. T - position of tip, A, B - positions on the edge, 

X1, …, XN - position of bending measurements, I1, …, IM - positions of indentation measurements. 

Data processing was based on the opensource Niget [15] (force-distance curve processing) and the 

opensource algorithm OEFPIL, obtainable at https://cran.r-project.org/package=OEFPIL. The OEFPIL - 

“Optimal Estimate for Function Parameters by Iterated Linearization” algorithm allows to take into account a 

general covariance matrix, in contrast to ordinary least squares minimization. 

Different commercial cantilevers produced mainly by Bruker have been used for testing. The main case study 

in this work was performed on a stiff cantilever RTESPA525 from Bruker.   

3. RESULTS AND DISCUSSION 

The contact stiffness was found to be (87.9 ± 2.5) nm/mN at 50 µN. For the following quantitative analysis we 

chose to use the same loading force as used for the bending. This allows us to avoid the conversion to the 

Young’s modulus which involves the tip shape and would lead to an unnecessary increase of the uncertainties. 

An example of the set of acquired force distance curves is shown in Figure 2. The corresponding slopes both 

corrected and uncorrected are plotted together with the distance from the edge in the same figure.  

 
Figure 2 Example of unloading curves measured at different locations (left), corresponding plot of the 

distance versus the measured stiffness (right). 

The resulting spring constant of the cantilever for this particular dataset is (140 ± 18) N/m.  

The apparent compliance measured at the point closest to the fixed edge was in this particular case 

380 nm/mN, thus the contact compliance is more than 20% of the measured compliance. We can see that 

although the force-distance curves seem linear at first sight the correction for the contact stiffness has a 
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noticeable impact. It shifts the cantilever spring constant from (146 ± 18) N/m without the correction to (140 ± 

18) N/m, thus ignoring the indentation introduces an overestimate of approx. 4 %.  

The uncertainty of the slopes of the unloading curves was around 1.5 %, usually well below 3 %. 

The cantilever length and the distance from the edge were calculated from the coordinates measured 

according to Figure 1. The corresponding uncertainties were calculated assuming an uncertainty in all 

coordinates equal to 0.5 µm, with the exception of the coordinates of the tip which are assumed to be 1.0 µm. 

This is necessary as the shape of the tip is not visible in the optical microscope. The average uncertainty of 

the length was 1.7 µm. For the total case study, the length was (115.5 ± 0.4) µm.  

The spring constant of the cantilever is being calibrated with a factor c = cF/ch, given by the calibration constants 

of the sensors. For our instrument it is 1.01 ± 0.12. This is due to a large uncertainty in the calibration of the 

force sensor which will be the focus of our future calibration studies. 

For our case study the fitting parameters (p, X0) were found to have uncertainties approx. 2-3 % for p and 

around 15-20 % for X0. They are strongly correlated, with a correlation around -0.98. 

The uncertainty of the spring constant is given by the combination of the uncertainties due to the uncertainties 

of the calibration factor, length and fitting parameters 

u(k) = √(
𝜕𝑘

𝜕𝑐
)

2

𝑢(𝑐)2 + (
𝜕𝑘

𝜕𝐿
)

2

𝑢(𝐿)2 + (
𝜕𝑘

𝜕𝑝
)

2

𝑢(𝑝)2 + (
𝜕𝑘

𝜕𝑋0
)

2

𝑢(𝑋0)2 + (
𝜕𝑘

𝜕𝑝
) (

𝜕𝑘

𝜕𝑋0
)  𝑐𝑜𝑟𝑟(𝑝, 𝑋0).       (4) 

Here corr(p, X0) is the correlation between the two fitting parameters. In all cases we encountered it was 

negative thus lowering the total uncertainty. 

The uncertainty budget for our example is shown in Table 1. 

Table 1 Example uncertainty budget 

Variable 
Value of variable 

xi 

Value of standard 
uncertainty 

u(xi) 

Sensitivity coefficient 
𝝏𝒌

𝝏𝒙𝒊
 

Contribution to 
uncertainty 

(N/m) 

Calibration factor  c 1.01 0.12 
𝑝3

(𝐿 − 𝑋0)3 16 

Length  
L 

115.3 µm 1.7 µm −3𝑐
𝑝3

(𝐿 − 𝑋0)4 6 

Fitting parameter p 640 N1/3
·m2/3 13 N1/3

·m2/3 3𝑐
𝑝2

(𝐿 − 𝑋0)3 
 

4 Fitting parameter 
X0 

-8.6 µm 1.3 µm 3𝑐
𝑝3

(𝐿 − 𝑋0)4 

We can see from Table 1 that the largest contribution to the uncertainty is due to the calibration factor. Its 

uncertainty is fairly high and future work will attempt to decrease it. The uncertainty due to the fitting parameters 

includes mainly the uncertainties due to sensor noise and positioning, the effect of the uncertainty of the contact 

stiffness is negligible. There is little room for improvement in positioning and sensor noise. The contributions 

due to length and fitting make up for a relative uncertainty of roughly 5 %. The total uncertainty is around 15 % 

currently so in order to decrease our total spring constant uncertainty below 10 % we need to achieve a 

calibration uncertainty approx. 8 %.  

The case study included a number of experiments. We evaluated the repeatability on a set of measurements 

between which the instrument had been restarted or the cantilever moved. We found a standard deviation of 

6 N/m which corresponds to 4 %. This is significantly smaller than the now dominant uncertainty due to the 
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instrument calibration but comparable with the uncertainty due to length. Based on our long-term experience 

with this instrument we assume that this reflects the small differences in the attachment of the cantilever as 

well as time instabilities in the calibration constants. 

 

Figure 3 Repeatability of the measurement of the spring constant. 

The number and location of the points where the bending was performed obviously influences the fit, and leads 

to differences in the fitting parameters and their covariance matrix. Obviously, it is important to choose the 

range of displacements as large as possible, as omitting the end points has a larger impact than omitting points 

in the middle. Numerical tests were performed by omitting combinations of points from the measured data set. 

However, even when using only 4 points for the fit the differences compared to the value obtained from the full 

data didn’t exceed 7 %. The relative uncertainties ranged from 13 %, same as for the full data, to 18 % in the 

worst case. Larger differences and uncertainties occurred when several neighboring points were omitted. This 

shows that an insufficient number of measuring points may introduce errors on the order of a few percent.  

The limits of this model should be kept in mind. Notably, the assumption of small deformations should be 

checked. The large deformation model [11,12] uses a dimensionless parameter α 

𝛼 = √
𝐹𝐿2

𝐸𝐽𝑧
               (5) 

Comparing the model with the large deformation model [11,12] it can be seen that in order to keep the deviation 

of the deformation below 1 %, α must be smaller than approx. 0.55. Since the exact parameters, such as 

thickness and Young’s modulus, are not known well, only very rough estimates can be made. We use nominal 

values for length, width and thickness and literature values for Young’s modulus for the estimates. In order to 

keep α low, the lowest load at which the indentation instrument can operate should be used; for our instrument 

this is 50 µN. While for a typical stiff cantilever with nominal stiffness 200 N/m we find for α the value 0.28, the 

value is 2.04 for a typical soft cantilever. These estimates refer to the application of load at the end of the 

cantilever. If the load is applied closer to the fixed side the α value is reduced. Obviously for soft cantilevers 

care must be taken to choose appropriate positions to apply load. If the deformations become too large, the 

large deformation model would have to be used which requires significantly more complex data processing.  

4. CONCLUSION 

Although calibration of AFM cantilevers using indentation devices is a long-established method, details on the 

uncertainties and other aspects are rarely discussed in literature. General recommendations are difficult to 

give as they depend on the technical parameters of the instrument and the stiffness of the cantilever. In this 

contribution we illustrated some metrological aspects such as uncertainty analysis, corrections due to 

indentation and repeatability on a case study using a commercial cantilever. For our instrument the 
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uncertainties in the calibration of the force and displacement sensors were the dominant contribution to the 

total uncertainty. It was also necessary to correct for the contact stiffness which could be measured on the 

fixed part of the cantilever. Repeatability has been checked as the attachment of the cantilever may vary and 

sensors can show time dependencies. However, differences were within margins of uncertainty. An uncertainty 

around 15-20 % can be achieved by this method but this includes full traceability. The disadvantages are its 

demands for time and cantilever manipulation. 
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