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Abstract 

Recently discovered two-dimensional (2D) transition metal carbides and nitrides (MXenes) have received 

tremendous attention because of their unique electrical, optical and chemical properties. These exceptional 

properties make them a suitable candidate for a variety of applications including multimodal tumor therapy by 

photothermal effect. In this work, we demonstrate how to reduce the size of 1-5 µm large Ti3C2 monolayer 

MXene sheets into ultrasmall 100-160 nm nanosheets by applying consecutive ultrasonication processes. 

Different microscopic techniques have been used to visualize the formation of ultrasmall single-layer Ti3C2 

nanosheets. The as-prepared MXene nanosheets have shown good solubility in water and ethanol. Further, 

(3-aminopropyl) triethoxysilane (APTES) and poly(3,4-ethylene dioxythiophene) polystyrene sulfonate 

(PEDOT:PSS) were utilized for surface modification of the MXene nanosheets to open the possibility of 

subsequent antibody bio-conjugation. Moreover, PEDOT:PSS improved the photothermal conversion 

performance of the nanosheets as documented by increasing their temperature from 48.6 ºC to 58.1 ºC on 

irradiation by 808 nm wavelength laser. Further in vivo and in vitro studies will be necessary to optimize the 

photothermal properties of Ti3C2 nanosheets.  
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1. INTRODUCTION 

Photothermal therapy (PTT) emerged as a non-invasive therapeutic strategy that can kill cancer cells through 

hyperthermia by converting photon energy into heat energy [1]. Different noble metal nanoparticles, nanorods, 

nanostars and 2D nanosheets of graphene, reduced graphene and black phosphorous have been utilized as 

photoabsrobers for PTT application [2-4]. MXenes first described in 2011 are a new class of 2D transitional 

metal carbides, nitrides, and carbonitrides obtained by etching and delamination of MAX phases [5,6]. MXenes 

have the formula Mn+1XnTx where M is the transition metal, X is C and/or N and T is a functional group e.g., 

-O, -F, -OH [5]. During this short time, different materials of MXenes have been discovered. Owing to ease in 

surface modification and excellent near-infrared light-absorbing capability, Ti3C2 nanosheets distinguish 

themselves from other MXene nanomaterials [7]. 

Several synthetic methods have been developed for the production of the biocompatible size range (50-

160 nm) of Ti3C2 nanosheets. Xuan et al, utilized an organic base tetramethylammonium hydroxide (TMAOH) 

to etch and delaminate multilayered Ti3C2 MXene sheets [8], while Yang et al obtained Ti3C2 nanosheets with 
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the hydrodynamic size range of 91.7 nm by using Tetrapropylammonium hydroxide (TPAOH) organic base [9]. 

The usage of organic bases can cause complications in biomedical applications. It is still a great challenge to 

reduce the size of Ti3C2 MXene nanosheets by only physical means within a short time while preserving the 

effect of PTT.  

Further, compared to traditionally used gold nanomaterials for PTT, Ti3C2 MXene nanosheets have also shown 

the Localized Surface Plasmon Resonance (LSPR) effect. Ti3C2 (MXene) nanosheets, having transition metal 

element (titanium), exhibit a strong NIR absorption as well as subsequent light-to-heat conversion property 

enabling effective application in PTT. In this regard, Liu et al. have proved that the LSPR effect of Ti3C2 MXene 

nanosheets can be enhanced by introducing Al-containing moieties in them [10]. Lin et al, in their pioneering 

work, presented preparation of few-layer T3C2 MXene nanosheets and their successful application as PTT 

agent. This work points at the great potential of Ti3C2 nanosheets (MXenes) as a novel photothermal agent 

used for cancer therapy [11]. Complexation in synthetic methods and increase in toxicity of Ti3C2 nanosheets 

required complex surface modifications that cause limitation of such a novel material in biomedical application. 

Taking these effects into account, cytotoxicity and stability are the two major concerns for the application of 

Ti3C2 nanosheets in PTT. Hence, a suitable Ti3C2 surface modification is required to attain improved LSPR 

effect, lower toxicity, and high stability in physiological systems [12]. 

Herein, we have successfully achieved a 100-160 nm size range of Ti3C2 nanosheets without the addition of 

any organic bases. Ultrasonication methods were utilized for the cutting of 1-5 µm single layer Ti3C2 MXene 

sheets into 100-160 nm Ti3C2 nanosheets. Further, (3-aminopropyl) triethoxysilane (APTES) were 

functionalized on the surface of Ti3C2 MXene nanosheets that further attached with NHS-PEG-Biotin through 

a chemical bond. This surface modification not only reduces the toxicity of Ti3C2 nanosheets but also causes 

great stability in different solvents including water, ethanol, and phosphate buffer solution (PBS). Interestingly, 

the LSPR effect of Ti3C2 MXene nanosheets is enhanced by utilizing poly(3,4-ethylenedioxythiophene) 

polystyrene sulfonate (PEDOT:PSS), which can further be attached with poly(ethylene glycol) moieties and 

can be utilized for the NIR-II PTT effect. 

2. EXPERIMENTAL 

2.1. Preparation of TI3C2 nanosheets 

Single layer micro size Ti3C2 MXene sheets (1-5 µm) were synthesized by using mixed acids (HCl+LiF) to etch 

Aluminum (Al) from Ti3AlC2 [13]. The cutting of as prepared larger Ti3C2 sheets into smaller ones was 

performed by utilizing subsequent bath and probe sonication. First, bath sonication (Sonorex RK 510 H, 

35 kHz, Bandelin) was applied for 24 h followed by 4 h probe sonication (Sonopuls HD 2070, 20 kHz, Bandelin) 

placed in the ice bath. The nanosheets were centrifuged (Model 3-30K, Sigma centrifuge) with 8000 RPM for 

40 min at 20 °C. The residue was collected and vacuum dried overnight. Next, the fully dried nanosheets were 

dissolved in 5 ml ethanol. The nanosheets were characterized by Atomic Force Microscopy (Bruker, Multimode 

8), Scanning electron microscopy (manufacturer), Zetasizer Nano ZS 90 (Malvern Panalytical).  

2.2. Surface modification of Ti3C2 nanosheets 

First, we have prepared amino-functionalized MXene sheets (MXene-NH2). 5 ml MXene solution (0.4 mg/mL) 

and 10 µl APTES (Sigma Aldrich) dissolved in 1 ml ethanol were mixed on a laboratory shaker for 24h. Next, 

1 mg of NHS-PEG-Biotin (Sigma Aldrich, 1469.72 MW) was dissolved in 1 ml ethanol and poured into the 

MXene-NH2 solution. The mixture was sonicated for 24 h, followed by vacuum drying overnight. The obtained 

solvent-free MXene-PEG-biotin powder was dissolved in PBS solution and stored for further use at 4 °C. 

Secondly, we have prepared PEDOT:PSS modified nanosheets (MXene-PEDOT:PSS). Similarly as in the 

previous functionalization procedure, the PEDOT:PSS (50 µL, OSSILA) was mixed with Ti3C2 nanosheets in 
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deionized water and left on a laboratory shaker for 24 h. Next, the solution was centrifugated at 10.000 RPM 

for 20 min, then the residue was collected and dissolved in DI water for further use. 

2.3. Photothermal effect 

The absorbance measurements were realized by a SolidSpec-3700 UV-VIS-NIR spectrophotometer 

(Shimadzu, Japan), using an integrating sphere. Deionized water was used for the baseline correction before 

the measurements and also as a reference sample during the measurements. 100 µl of pure and surface 

modified Ti3C2 nanosheets were used in a transparent quartz cell and irradiated with an 808 nm laser 

(0.430 W). The temperature changes were recorded with a K-type thermocouple coupled to an Extech SDL200 

data-logging thermometer. 

2.4. Cell viability test 

The HCT116 (CCL-247, human colorectal carcinoma) cells were seeded into 96 well plates in a concentration 

of 10 thousand cells per well. For each sample, we have used 6 parallel wells. Cells were cultivated in DMEM 

medium with stable 2 mM L-glutamine (Biochrom) supplemented with 10% fetal calf serum (FCS, Biochrom) 

and gentamicin 80 μg/ml (Lek). Cells were incubated in a humidified atmosphere at 37 °C in the presence of 

5 % CO2 for 24 h. The cells were moved to hypoxic workstation Ruskinn Invivo2 300 (Ruskin) with 1 % O2 and 

5 % CO2 for 24 h to induce the expression of CAIX protein and other hypoxia-inducible proteins. After 24 h in 

hypoxia, 40 µl of the samples were added to the media and incubated further for 24 h or 48 h. Cell viability 

assay was done by Cell Titer blue viability assay (Promega) according to manufacturer’s instructions. 20 µl of 

Cell titer blue reagent were added and incubated for 1 hour at 37 °C in the presence of 5 % CO2. The 

fluorescence was measured at 590 nm (Synergy H4 microplate reader, BiTek) and the fluorescence and 

percentage of viable cells were determined. Each sample analysis was done in hexaplets and the standard 

deviation and T-test were determined. 

3. RESULTS AND DISCUSSION 

 

Figure 1 (a) Schematic illustration of a synthetic process for Ti3C2 MXene nanosheets including mixed acids-

based etching, ultrasonication exfoliation, and cutting. (b) Subsequent APTES-PEG-Biotin surface 

modification of Ti3C2 nanosheets and their photothermal response to NIR light. 

The scheme of the preparation of the MXene nanosheets is illustrated in Figure 1(a). To achieve smaller size 

Ti3C2 MXene nanosheets compatible with the biomedical application, two subsequent ultrasonication 

processes were applied on the MXene sheets. Traditionally the liquid phase exfoliation method uses sonication 

to create the force necessary to exfoliate 2D materials. Since, in our experiments, we apply sonication on 

already single- and few-layer MXene sheets. Hence, further mechanical agitation by sonication is leading to 
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size reduction. Firstly, the bath sonication of the larger Ti3C2 MXene sheets (1-5 µm) causes the cutting of the 

sheets into 500-700 nm diameter sheets Figure 2(a). Then probe sonication further reduces the nanosheets 

into considerably smaller sizes (100-160 nm). The size of the nanosheets both after bath and probe sonication 

was confirmed by AFM (see Figure 2 (b)). The size distribution was estimated from SEM micrographs taken 

from drop-casted samples on the silica substrate of the MXene solution (see Figure 2(c-d)). The SEM images 

were evaluated by ImageJ software to acquire the lateral size of the sheets. The mean value of the lateral size 

is 100-160 nm Figure 2(d). From the size distribution study of the sonicated MXene solution, we can conclude 

that it was required to combine both bath and probe sonication for proper size reduction. 

 

Figure 2. AFM images of (a) after 24 h bath sonicated Ti3C2 MXene nanosheets, and (b) bath (24 h) and 

probe (4 h) sonicated Ti3C2 nanosheets. SEM images of (c) 24 h bath sonicated Ti3C2 MXene nanosheets, 

and (d) 24 h bath and 4 h probe sonicated Ti3C2 MXene nanosheets: Inset is showing the size distribution of 

150 nanosheets done by using ImageJ software. 

The MXene nanosheets were functionalized to further explore their potential in biomedical application (see 

Figure 1(b)). We performed amino-functionalization via APTES, which resulted in -NH2 terminals on the 

surface. Further, the MXene-NH2 was PEGylated since polyethylene glycol is well known for its protein 

resistance and biocompatibility. Moreover, the biotin on the PEG terminal offers the opportunity for subsequent 

antibody bio-conjugation. Furthermore, we also prepared PEDOT:PSS functionalized nanosheets. The 

prepared MXene nanosheets before and after functionalization have shown high stability. The zeta-potential 

of as-prepared and surface modified MXene nanosheets was -50.8 mV and -45.3 mV respectively. 

To verify that our treatment did not diminish the optical and photothermal properties of the MXene sheets, we 

studied them with UV-VIS spectrophotometry and checked the photothermal performance at 808 nm. From 

the UV-vis absorption spectra, it can be seen clearly that Ti3C2 nanosheets show absorption in the NIR region 

Figure 3(a). Further, the optical absorption scaled linearly with a concentration upon the dilution of pure Ti3C2 

MXene nanosheets. The absorption properties of optically active materials are dependent on size and surface 

chemistry. The modification of the surface of Ti3C2 MXene nanosheets with APTES/NHS-PEG-Biotin and 

PEDOT:PSS resulted in the broadening of the absorbance peak in the NIR region Figure 3(b). These 

absorbance properties of pure nanosheets and surface-modified Ti3C2 nanosheets suggest that the presented 

materials could be potential photothermal agents.  
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The strong absorption of Ti3C2 nanosheets in the NIR range made possible their application as a photothermal 

agent in cancer therapy [8]. It can be seen clearly in Figure 3(c,d) that both pure MXene and MXene-

PEDOT:PSS nanosheets have very good photothermal cycling stability under 808 nm laser irradiation. The 

temperature of pure Ti3C2 nanosheets dispersion was increased to about 20ºC within the first 4 min of 

irradiation Figure 3(e), and the highest temperature achieved was 48.6ºC. However, it was surprising to 

observe that by mixing PEDOT:PSS with Ti3C2 nanosheets the temperature increase was faster and higher to 

about 10ºC as compared to pure Ti3C2 nanosheets Figure 3(f). Hence, the manipulation of photothermal 

properties of MXene nanosheets can be done by modifying their surfaces with different surfactants. 

 

Figure 3. UV-visible absorption spectra of (a) MXene nanosheets and with two dilutions, (b) surface modified 

MXene with PEDOT:PSS and APTES/NHS-PEG-Biotin. Photostability test of (c) pure, and (d) MXene-

PEDOT:PSS nanosheets in DI water under 808 nm laser irradiation. Photothermal performance of (e) pure, 

and (f) MXene-PEDOT:PSS nanosheets. 

 

Figure 4. Cytotoxicity of MXene and MXene-PEDOS:PSS nanosheets regarding HCT-116 cell line. 

Besides having outstanding photothermal properties, the other key feature for biomedical nanomaterial design 

is the cytotoxicity of the material. Our results in Figure 4 revealed that pure Ti3C2 and MXene-PEDOS:PSS 

nanosheets do not cause any damage to the cells and therefore are nontoxic. In normoxic (21 % O2) conditions 

after 24 h, the viability for pure Ti3C2 nanosheets is 78 % while for PEDOT:PSS modified Ti3C2 nanosheets 
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results out 80 %, after 48 h it is even more than the control. In hypoxic (1 % O2) conditions after 24 h and 48 h, 

pure Ti3C2 nanosheets have even better viability than the control, and the values of MXene-PEDOT:PSS are 

similar to the control. 

4. CONCLUSION 

In summary, an organic solvent-free ultrasonication-based approach was designed to get a highly uniform and 

biocompatible size range of Ti3C2 nanosheets (100-160 nm). The cutting of larger size (1-5 µm) Ti3C2 MXene 

sheets into the anticipated smaller size was achieved by consecutive bath and probe sonication. The attained 

Ti3C2 MXene nanosheets were stable in water for more than three weeks. The surface modification of Ti3C2 

nanosheets by NHS-PEG-Biotin and PEDOT:PSS were studied. While the usage of NHS-PEG-Biotin can later 

easily facilitate a specific antibody's binding, in the case of PEDOT:PSS surface functionalization, we observed 

enhanced photothermal conversion performance under 808 nm irradiation. Cell viability tests have shown that 

Ti3C2 nanosheets and PEDOT:PSS modified Ti3C2 nanosheets are nontoxic to the tested cell lines. We believe 

that this work will provide a feasible approach for the fabrication of biomedical application-worthy Ti3C2 

nanosheets. 
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