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Abstract 

In this work, thermal stability and mechanical properties of Ti/Ni multilayer thin films were studied. The 

multilayer thin films were synthesised by alternately depositing Ti and Ni layers using magnetron sputtering. 

The thickness of constituent layers of Ti and Ni varied from 1.7 nm to 10 nm, and one coating was deposited 

by simultaneous sputtering of both targets. Single crystalline silicon was used as a substrate. The effects  

of thermal treatment on the mechanical properties were studied using nanoindentation and discussed 

in relation to microstructure evaluated by X-ray diffraction. Annealing was carried out under low-pressure 

conditions for 2 hours in the range of 100–800 °C. 
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1. INTRODUCTION  

By continually increasing demands and needs of humankind, science and research have reached a state 

where standard monolithic materials are no longer sufficient. Thanks to this, materials with a complex and 

advanced structure are currently being studied intensively.  

One of the new trends in the thin films synthesised by plasma deposition is controlling the properties of 

coatings, for example, by alternating layers of various materials at the nanoscale and achieve functions that 

none of the original components has. In this way, it is possible to create a multilayered thin film with the option 

to choose the thickness of constituent layers, the ratio of layers thicknesses, the number of constituent layers, 

etc [1,2]. 

Ti/Ni multilayered thin films are one of the complex structures with superior functional properties (e.g. electric, 

magnetic and optical). These multilayered systems can be used to form TiNi shape memory alloys (SMA) 

which exhibit two closely related properties: shape memory effect (SME) and superelasticity (SE). These 

effects are caused by the martensitic transformation from a simple cubic structure (austenitic, phase B2) to  

a monoclinic crystalline structure (martensite, phase B19’), whereas this phase transformation is reversible 

and instantaneous. The transformation can be achieved by annealing or by applying stress [3,4]. Thanks to 

the remarkable SE and SME effects, TiNi SMA can be found in a wide range of fields such as medical, 

aeronautic, electric, telecommunication or as sensors and actuators in MEMS [4-8]. 

In this work, annealing was chosen to ensure the transformation. In the case of this approach, the uniformity 

of layers thicknesses on the nanoscale is crucial [9]. Moreover, for applications in MEMS, it is necessary to 

produce TiNi thin films with a thickness of several µm. For these reasons, magnetron sputtering is one of the 

most common deposition techniques to synthesise multilayer thin films with low total thicknesses and adequate 

uniformity. For the fabrication of Ti/Ni multilayer films, a dual-head sputtering system with Ti and Ni targets can 
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be utilised and periodically turned the power on and off ensures alternating nanolayers of pure Ti and Ni. 

Afterwards, this multilayered system can be converted into the TiNi alloy thin film through solid state 

amorphisation by using a heat treatment. A significant advantage of magnetron sputtering over other 

deposition techniques used for multilayer thin films as e-beam evaporation, pulsed laser deposition  

or accumulative roll bonding, is an option of easily scalable resulting structure of multilayer by choosing 

deposition properties [10]. 

In this work, we have been mainly focused on thermal stability and development of mechanical properties  

with annealing of Ti/Ni multilayers prepared by dual-head magnetron sputtering of Ti and Ni targets. Annealed 

thin films composed of nanolayers with different thicknesses underwent nanoindentation tests, and results 

were discussed in relation to microstructure obtained by X-ray diffraction. 

1. EXPERIMENTAL 

Ti/Ni multilayers were synthesised by dual-head magnetron sputtering in an argon atmosphere. To ensure 

multilayer structure, the power on titanium and nickel targets was periodically turned on and off depending on 

which layer was currently depositing. Single crystalline silicon was used as substrates and before the 

deposition they were etched by ion bombardment for 5 minutes. During the deposition, the negative floating 

potential was applied on a substrate holder and to achieve sufficient spatial homogeneity, the substrate was 

rotating. By deposition of one-layered coatings of Ti and Ni, their deposition rates were found to be 0.75 nm/s 

and 1.52 nm/s, respectively. The desired thickness of an individual layer h was programmed by the variation 

of deposition time. The deposition conditions as applied power on targets, deposition pressure and substrate 

rotation speed for each multilayer design are listed in Table 1. The first presented coating h = 0 nm is prepared 

by simultaneous sputtering of both targets and therefore does not exhibits multilayered microstructure. 

Table 1 Summary of deposition conditions of all Ti/Ni multilayered coatings 

h (nm) 
Overall thickness 

(nm) 
Power on Ti 
target (W) 

Power on Ni 
target (W) 

Deposition 
pressure (Pa) 

Rotation (rpm) 

0 500 350 350 0.30 3.0 

1.7 1190 300 300 0.16 4.8 

2.5 1000 300 300 0.16 4.8 

5.0 1000 300 200 0.16 4.8 

10 500 350 350 0.30 3.0 

After the deposition, one sample from each layering underwent a series of annealing in thermal desorption 

spectroscopy chamber from 50 to 800 °C. For each annealing, the constant temperature was kept for 2 hours.  

One of the analytical methods utilised to study the effect of annealing was the depth-sensing nanoindentation 

performed on Hysitron TI950 Triboindenter equipped with a Berkovich tip. To determine the indentation 

hardness H and the reduced elastic modulus Er, nanoscale measuring head was used. This head allows 

measure in the load range from 50 nN up to 11 mN with a resolution of 1 nN. Several quasistatic tests with 20 

segments of partial unloading were performed in load control regime. As it is shown in Figure 1a), each 

segment consists of three parts: loading, hold and unloading, and each part lasted 2 seconds. The result of 

such a loading function can be load-displacement curve plotted in Figure 1b), where every partial load 

segment can be evaluated according to the standard procedure proposed by Oliver and Pharr [11]. Thanks to 

that, the depth profile of hardness and modulus can be obtained by this approach. Example of such depth 

profiles are plotted in Figure 1c). In this work, single measurement consists of 16 load-displacement curves 

whose depth profiles were averaged and standard deviations were calculated. Values of the hardness and the 
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reduced elastic modulus in the smallest common depth (negligible substrate influence) were used to compare 

samples and annealing temperatures. 

 

Figure 1 Quasistatic partial unload test: a) load function, b) load-displacement curve, c) hardness and 

reduced elastic modulus as a function of maximum depth per segment 

In order to correlate the hardness and elastic modulus evolution with microstructural information, X-ray 

diffraction (XRD) was utilised for the phase identification. XRD experiments were performed in Rigaku 

Smartlab X-ray diffractometer using Cu Kα radiation with a wavelength of 0.15418 nm with a grazing angle  

of incidence configuration. 

2. RESULTS AND DISCUSSION  

The evolution of the hardness as a function of annealing temperature is plotted in Figure 2 for each studied 

multilayer. The increase of hardness of as-deposited multilayers with the increasing layer thickness in the used 

range was already reported in our previous study [12] and interpreted as an interface crossing of single 

dislocations [13,14]. After the first set of annealing at 100 °C, differences between hardness values of coatings 

get smaller even almost equalised at 200 °C, what can be caused by alloying. With further increasing 

temperature, differences become more significant.   

 

Figure 2 Development of hardness as a function of temperature for synthetised multilayers and one non-

multilayer coating labelled as h = 0 nm 
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The average hardness for all coating and a specific temperature, marked by the dashed line, is continuously 

decreasing until 500 °C, except for annealing temperature 300 °C. At 600 °C hardness of multilayers 

significantly increased, and even more, a rapid increase occurred for non-multilayered coating (h = 0 nm) up 

to 15 GPa, which is more than twice as high as for the as-deposited coating. After annealing with even higher 

temperature, the coating has delaminated from the substrate or the coating has entirely desorbed. Substantial 

raise of hardness in the case of non-multilayer was not caused by higher substrate hardness, because the 

desorption was not observed even after annealing at 800 °C. 

Reduced elastic modulus as a function of temperature was plotted in Figure 3 in the same way as for hardness 

evaluation. From room temperature (RT) to annealing temperature 200 °C, order of reduced elastic modulus 

of multilayers was kept the same – maximum Er for h = 5 nm and minimum Er for h = 1.7 nm. Dashed line 

indicating reduced elastic modulus for all coating and the specific temperature has a very similar development 

as in the same graph plotted for hardness. The reduced elastic modulus is gradually decreasing until 500 °C, 

except for annealing temperature 300 °C, where the obtained value is slightly higher. After annealing at  

600 °C, the reduced elastic modulus of multilayers increased but only a little. More significant influence of 

annealing temperature on the reduced elastic modulus was found in the case of multilayer with h = 1.7 nm. In 

this case the reduced elastic modulus decreased ~1.4 times at 500 °C in comparison with as-deposited 

multilayer. The significant influence of annealing was found for non-multilayer coating as well. In contrast to 

the as-deposited coating, after annealing to 600 °C, reduced elastic modulus increased ~1.3 times and was 

much higher than for multilayers. 

 

Figure 3 Development of reduced elastic modulus as a function of temperature for synthetised multilayers 

and one non-multilayer coating labelled as h = 0 nm 

For both coatings where significant influence of annealing was found, XRD measurements were performed in 

the range RT–500 °C. The XRD diffractograms presented in Figure 4a) for h = 1.7 nm and in Figure 4b) for  

h = 0 nm exhibiting polycrystalline microstructure. The microstructure is composed of hexagonal (hcp) Ti, cubic 

(fcc) Ni grains and Ti-Ni intermetallic grains which emerged at higher annealing temperatures. 

In the multilayer with h = 1.7 nm, Ni (111) stays as the strongest peak with increasing annealing temperature 

from room temperature until 300 °C. In this temperature range, the intensity of Ti (002) peak is decreasing, 

and this peak completely disappeared at 400 °C. Other notably lower peaks Ti (110), Ti (004) and Ni (222) 

disappeared as well. At this temperature, two new peaks corresponding to Ti-Ni intermetallic phase were 
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detected, what is corroborated by previous works [15-17]. Shifted Ni (111) peak could contribute to the intensity 

of peak labelled as TiNi3 (004). The disappearance of individual Ti and Ni peaks indicates possible 

disintegration of the layers and the formation of fully intermixed and alloyed structure. These phenomena can 

be the cause of a drop in hardness and reduced elastic modulus development. In the coating with non-

multilayer structure, new intermetallic peaks did not emerge after higher annealing temperature, but they could 

contribute to the intensity of Ni (111) peak. This is highly probable due to a much easier way to form the alloyed 

structure from the non-multilayer structure. In this coating, noticeable shifting of the dominant peak is observed 

what can be caused by induced residual stress or by diffusion of atoms of one layer into another layer. 

Emerging and disappearing of Ti (010) and Ti (100) peaks is not clear yet, but more detailed investigations on 

this topic will be executed. 

 

Figure 4 Diffraction patterns for Ti/Ni a) multilayer with individual layer thickness h = 1.7 nm,  

b) non-multilayer coating labelled as h = 0 nm 

3. CONCLUSION 

Several Ti/Ni multilayers synthesised by magnetron sputtering with different individual thicknesses of Ti and 

Ni layers were annealed. The main aim was to study the temperature dependence of their mechanical 

properties and to find a correlation with microstructural information. Based on the nanoindentation results, it 

was found out that hardness and reduced elastic modulus is decreasing with increasing annealing temperature 

until 500 °C. After annealing to 600 °C, both hardness and reduced elastic modulus increased especially in 

the non-multilayer coating (hardness of annealed at 600 °C is ~2.5x higher than for as-deposited). After 

annealing at even higher temperature, coating has delaminated from the substrate or entirely desorbed. From 

the XRD results, it was concluded that all synthesised coatings have polycrystalline microstructure, which is 

becoming intermix and alloy after annealing at ~400 °C. The XRD patterns were described, and different 

phenomena were explained, and correlation with mechanical properties was proposed. 
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