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Abstract 

Topological and edge defects and misalignment of graphene layers in few-layer graphene strongly influence 

its chemical reactivity and thermal stability. Scanning and transmission electron microscopy and image 

analysis was used to determine alignment, degree of rotation, between layers in few-layer graphene prepared 

by decomposition of ethanol in microwave plasma torch at atmospheric pressure. The prepared nanosheets 

consisted of 1 to 20 layers, with interlayer distance of 0.34 nm, and the main structure was formed by 

successive growth of individual layers on top of each other. Using FFT, the edges and wrinkles were separated 

from the graphene layers themselves. The layers were spread out on each one separately and the angles of 

rotation between them were measured. The rotation angle between layer was from 20 to 30 degrees and the 

high quality graphene nanosheets, Raman bands 2D/G ratio of 1.6 and D/G ratio of 0.5, exhibited 

predominantly closed edges and opened edges were mostly found in the layers forming islands on the main 

structure. Graphene nanosheets remain fully stable in vacuum up to 1000 °C and thermogravimetric analysis 

showed complete burnout of the sample in synthetic air at 770 °C with more defective sample exhibiting higher 

weight loss between 400 and 700 °C. 
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1. INTRODUCTION 

In-plane and edge defects, as well as misalignment of graphene layers have significant impact on many 

practical applications of few-layer graphene. Freestanding graphene nanosheets can be used as composite 

filler, anti-corrosive coatings, gas and chemical sensors or light weight and transparent conductors in flexible 

electronics and displays [1]. High temperature stability under inert or oxidation atmosphere plays a key role in 

these future key enabling technologies such as batteries for electric transport, flexible electronics and smart 

building and textile materials. It was also shown recently that twisted graphene with small rotation between 

layers exhibits superconductivity [2] opening further possible applications in quantum computing and 

spintronics. Due to the limited size of microwave plasma synthesized graphene nanosheets, from tens to 

hundreds of nanometers, the structure needs to be stabilized by elimination of free dangling bonds and various 

types of defects. Formation of curved and closed edges is one of the mechanisms responsible for the 

stabilization of the structure by minimizing the energy of nanosheet structure [3]. Another way to limit a 

chemical reactivity is the formation of carbon-hydrogen bonds during the synthesis process either by addition 

of -CH groups or by reactions with atomic hydrogen. Therefore, the elimination of zero dimensional defects in 

the graphene structure by optimization of growth conditions further increases the importance of corrugations 

and edges in the chemical reactivity of freestanding graphene nanosheets. In this work, we investigate 

structure of edges and misorientation of individual layers in microwave plasma synthesized few-layer graphene 

nanosheets and their effect on nanosheet’s high temperature oxidation. 
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2. EXPERIMENTAL 

Graphene nanosheets were synthesized by decomposition of ethanol in argon carrier gas using dual-channel 

microwave plasma torch (MPT) at atmospheric pressure. Depending on the deposition conditions two kinds of 

samples were prepared. High quality graphene (hqG) nanosheets were prepared with central channel flow Qc 

500 sccm and 350 W delivered microwave power in laminar flow regime. Defective graphene (dG) nanosheets 

with high number of defects were synthesized using central channel flow of 920 sccm and 350 W delivered 

microwave power in unstable gas flow dynamics. In all cases the liquid mass flow rate of ethanol was 45 mg 

per minute carried by secondary argon gas channel Qs (700 sccm) into reaction chamber. The detailed 

description of the experimental procedure can be found in our previous publications [4], [5]. Samples were 

imaged with TESCAN scanning electron microscope (SEM) MIRA3 with Schottky field emission electron gun 

equipped with Oxford Instruments EDX analyzer. Transmission electron microscopy (TEM) was carried out 

using JEOL JEM-2100F and FEI Tecai F20 microscope. ImageJ Fiji software was used for determination of 

nanosheet size and Fast fourier transform (FFT) image analysis. Raman spectroscopy was carried out using 

HORIBA LabRAM HR Evolution system with 532 nm laser, using 100x objective, and 5% ND filter (500 mW 

maximum power), 600 grating and 30 s acquisition time in the range from 1000 to 3200 cm-1. 

Thermogravimetric analysis (TGA) was carried out using a Setaram Setsys Evoluton 1750 instrument. The 

analyses were conducted in a dynamic air atmosphere (20 sccm-1) with a constant heating rate of 5 °C.min-1 

in the temperature range from 40 to 1000 °C. The obtained data were processed using the Setaram Processing 

software. The thermal stability of the carbon nanomaterial was investigated as a function of thermal annealing 

under UHV conditions using thermal desorption spectroscopy (TDS). The samples, graphene powder on 

Si/SiO2 substrate were annealed at pressure of 10−5 Pa up to 1000 °C with constant heating rate of 10 °C.min-1. 

The mass spectrometer Pfeiffer Vacuum Prisma 80 was set in order to follow the evolution of hydrogen and 

hydrocarbon species in time. 

3. SEM AND TEM ANALYSIS OF GRAPHENE NANOSHEETS 

Two samples were analyzed: high quality (hqG) and defective (dG) graphene. Both types of samples are 

prepared in the form of foam formed from nanosheets and individual nanosheets are oriented in various 

directions (Figure 1). 

 

Figure 1 SEM image of hqG and dG nanosheet samples (from left to right). The good sheets are in green 

circles, the damaged in red. 

The individual nanosheets are rectangular in shape with size of several hundreds of nm and it was difficult to 

distinguish between high-quality and low-quality graphene for the untrained eye. Therefore, it was necessary 

to evaluate orientation of multilayer structure of nanosheets and whether the sheets have torn edges or not 

i.e. high number of defects on the structure boundary which would be a sign of poor-quality graphene. The 

more defective sheets exhibit small changes of contrast in the crystal plane and breaks around the edges. In 

Figure 1, the nanosheets with closed edges are circled in green and the ones with broken ones are circled in 

red. Detailed images of graphene nanosheets were obtained by high resolution TEM. As can be seen in 

Figure 2, the hqG sample consisted of overlapping graphene layers with closed edges, clean straight lines in 
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the image. dG sample consisted of a main graphene layer covered with small islands of graphene and closed 

carbon networks. The edges of the small nanosheets were mostly opened and the main structure edge 

consisted of opened and closed sections.  

 

Figure 2 HRTEM image of hqG (left) and dG (right) nanosheet samples. Inset - FFT analysis of multilayer 
structure 
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Figure 3 Separation of the edges and wrinkles from the graphene layer itself and determination of distance 

between graphene layers (0.3 – 0.4 nm) 

The FFT (Fast Fourier Transformation) of graphene [6] is a very powerful tool that allows us determination of 

orientation of individual layers, inset of Figure 2, and the separation of an edge from the surface of a layer [7] 

as shown in Figure 3. The FFT of graphene exhibits six-fold symmetry, so the number of dots indicates the 

number of graphene layers on top of each other. By measuring the angle between the lines connecting the 

points, that represent different layers, and the center of the shape, it is possible to determine how much these 

layers are rotated towards each other [8], see Figure 4. 

 

Figure 4 FFT analysis of three-layer graphene (on the Figure 3) and the modeling of the whole layer. The 

angles between layers are approximately 20 degrees. 

The intact edge gives the FFT pattern with the preferred direction (Figure 5 FFT B, C, D on the left), which 

indicates the orientation of the edge in space. The defect edge creates a random arrangement in the FFT 

pattern (bright area inside the circle on FFT A on the left). On the regular edges with a local defect, the FFT 

pattern is a combination of the above (FFT A,B,C,D on the right) [9]. Such analysis of our nanosheets showed 

substantially higher number of defects on the edges of dG sample than in case of hqG sample.  

https://paperpile.com/c/Sc2GNl/uGks
https://paperpile.com/c/Sc2GNl/LaVt
https://paperpile.com/c/Sc2GNl/my2b
https://paperpile.com/c/Sc2GNl/2xz5


Oct 21st – 23rd 2020, Brno, Czech Republic, EU 

 

 

 

Figure 5 FFT analysis of the edges of hqG (left) and dG (right) graphene nanosheets. 

4. RAMAN SPECTROSCOPY OF GRAPHENE NANOSHEETS 

To investigate the degree of disorder in the studied samples we compared Raman spectra of synthesized 

graphene nanosheets (Figure 6). Raman spectra of both types of samples consisted of D, G and 2D bands 

[10] at 1350, 1580 and 2690 cm-1, respectively. The G band is related to the in-plane bond stretching of carbon 

atoms in crystal structure with sp2 hybridization and D band is activated in the presence of defects in the 

hexagonal structure. In our case it was also found in the Raman spectra due to the bending and folding of 

nanosheets edges, which play an important role in the stabilization of the whole structure. 2D band is highly 

enhanced in the single layer graphene and with increasing number of layers its intensity decreases and full 

width half maximum (FWHM) of the 2D peak is increasing, from 30 to 60 cm-1. In our high-quality sample, the 

2D/G ratio was 1.6 and FWHM of 2D band was 50 cm-1. In case of more defective sample, the 2D/G ratio 

decreased to 1.1 and D/G ratio increased from 0.5 to 0.8. 

   

Figure 6 Raman spectra of a) hqG and b) dG nanosheet samples. 

Substantial difference was found in the intensity of disorder related bands D* - 1260 cm-1, D** - 1495 cm-1 and 

D´ - 1618 cm-1. These bands are activated in the presence of amorphous phase and opened edges in the 

nanosheets structure. The intensity of these bands was negligible in the case of hqG sample but in the spectra 

of dG sample, the (D*+D**+D’)/G ratio was 0.8. Except first order Raman bands, second order bands G* at 

~2450 cm-1 and D+G band at ~2950 cm-1 were observed in the measured spectra as well.  

5. THERMAL DESORPTION SPECTROSCOPY ANALYSIS 

At first, thermal stability of graphene nanosheets was investigated by thermal annealing and mass 

spectrometry in high vacuum. Measured mass spectra were consistent with expected thermal decomposition 

of carbon nanostructures. CO and CO2 molecules and C2HxO precursor fragments were observed at 

https://paperpile.com/c/Sc2GNl/TURm


Oct 21st – 23rd 2020, Brno, Czech Republic, EU 

 

 

temperatures of 960 °C and 640 °C, respectively. CO and CO2 were formed by the reaction of carbon and 

oxygen incorporated into graphene nanosheets structure and residual oxygen in the apparatus. The observed 

intensity of these compounds was in agreement with the thermodynamic calculations of standard Gibbs energy 

for reactions of carbon and oxygen [11] where the formation of CO is favored over CO2 with increasing system 

temperature. No visible change of the nanomaterial was observed at the whole temperature range and Raman 

spectroscopy analysis of annealed sample showed no significant variation of either intensity or FWHM of 

Raman peaks showing good thermal stability of graphene nanosheets in vacuum. Due to the small amount of 

oxygen, several atomic percent, even more disordered graphene structure did not exhibit any substantial 

structural changes. 

6. THERMOGRAVIMETRY ANALYSIS OF GRAPHENE NANOSHEETS 

We further investigated the influence of the amount of disorder on thermal stability of prepared nanosheets in 

synthetic air at temperature range between 40 and 1000 °C (Figure 7). Size of nanosheets and amount of in-

plain defects and structure of edge play the main role in the oxidation resistance of carbon nanomaterial. 

Morgan et al. [12] developed the so-called “shrinking core model”, where the particles with smaller diameter 

exhibit lower temperature of oxidation. Similarly, nanostructures with lower level of graphitization and higher 

amount of defects will exhibit lower temperature of combustion, because the point and linear defects in the 

crystal structure are more susceptible to thermal decomposition by oxidation reaction [13].  

 

Figure 7 Thermogravimetry analysis of prepared few-layer graphene nanosheets 

Overall TGA curve of carbon based materials exhibited several regions. The initial mass loss was occurring 

around 100 °C and corresponds to the release of water vapors from the carbon particle surface. At higher 

temperatures between 200 and 300 °C, the thermal decomposition of unstable oxygen-containing functional 

groups as well as intercalated water release can occur, but this region was negligible in our samples. The 

graphene based nanomaterial itself begins to combust above 300 °C, where decomposition of light amorphous 

poly-carbons to carbon dioxide occurs which are easily vaporized as can be seen on the TGA curve of dG 

sample. At last, gradual decomposition of graphene nanosheets structure itself followed above 600 °C due to 

the breaking of C-C bond and exothermic reaction between carbon and oxygen formed CO and CO2. Due to 

small number of defects and stable nanosheets edges, hqG sample exhibited only the last described region 

above 650 °C and complete loss of material was observed at 770 °C. Abrupt loss of material at this temperature 

was consistent with first-order reaction kinetics of simple oxidation reaction. dG sample with higher amount of 

disorder exhibited loss of material above 300 °C and between 450 and 650 °C, but reached the same 

temperature of complete weight loss (100 %) at 765 °C.     

7. CONCLUSIONS 

Orientation and edge structure of individual layers of few-layer graphene prepared by microwave plasma 

decomposition of ethanol was studied by high resolution electron microscopy. Misorientation of layers was 20° 
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or more and it was independent of the degree of disorder determined by Raman spectroscopy. Detailed image 

and FFT analysis of individual nanosheets determined large contributions of opened edges to sample disorder 

in nanosheets prepared in an unstable gas flow regime. Such nanosheets exhibited higher oxidation rate in air 

during thermogravimetric analysis with two additional regions related to amorphous and highly disordered 

carbon.  
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