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Abstract  

Nowadays, the rapid identification of bacterial antibiotic resistance is one of the major biomedical challenges. 

Classical methods of detection (culture and sensitivity testing, microbial whole-genome sequencing) fail in the 

context of time requirements. In this work, we propose the express method for the detection of gene encoding 

enzyme responsible for bacterial antibiotic resistance. Proposed analytical approach is based on a combination 

of unique advantages provided by surface enhanced Raman spectroscopy (SERS) and artificially created 

convolutional neural network (CNN). SERS is known for the extremely high sensitivity and fast analysis, while 

CNN seems to be a promising alternative to find even ambiguous spectral properties produced by the Raman 

signal. 
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1. INTRODUCTION 

The culture-based approach for diagnosis of antibiotic-resistive bacteria development is currently used. 

However, culturing of the bacteria takes more than 24 hours and together with further species identification 

and evaluation can prolong time of analysis up to several days [1], which is crucial in need of urgent treatment. 

On the other hand, such methods as multiplex PCR, [2] electrochemical detection [3], and mass spectrometry 

[4] can achieve high accuracy for recognition of specific DNA, responsible for antibiotic resistence. 

Nevertheless, these techniques require expensive instruments, sophisticated sample preparation, and trained 

staff for obtained data analysis [5]. 

Recently, Surface-enhanced Raman scattering (SERS) analysis became a promising analytical tool in the field 

of sensing of DNA oligomers, with especial focus on the presence of antibiotic-resistant genes [6;7;8]. The 

main advantages of this method are related to the possibility to provide rich spectral information obtained 

through direct analysis of biomedical samples [9]. However, poor reproducibility and possible interferences of 

SERS bands due to the complex structure of biological samples restrict the direct SERS application. As an 

overcoming solution the machine-learning spectral data analysis was recently proposed [10,11]. It is well 

known, that typical post-processing statistical tools, such as PCA, linear discriminant analysis or 2D correlation 

fail in the need to find non-linear spectral correlations [12], when machine learning algorithms are characterized 

by a capability to found complex relationships in data analysis, making the overall analytical procedure highly 

reliable. 

In our previous work [10,11], combination of SERS and artificial neural networks for relevant DNA oligomers 

recognition and its promising applications were demonstrated for the first time, and now we have focused on 

the optimization of the biosensor to increase the reproducibility, accuracy and usefulness of the 

measurements. 
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2. EXPERIMENTAL 

2.1. Reagents 

Acetic acid (reagent grade, ≥99 %), diethyl ether, deionized water, 4-aminobenzoic acid (≥99.0 %), p-

Toluenesulfonic acid monohydrate (ACS reagent, ≥98.5 %), high-purity water (EMD MILLIPORE) were 

purchased from Sigma-Aldrich and used without further purification. The oligonucleotides (ONDs) were 

obtained from Thermofisher. The OND sequences used in this study are presented in Table S1. DVD+R disks 

(Verbatim) were purchased from local shop (Alza). 

2.2. Preparation of samples 

For preparation of plasmon-active substrate the polymer grating was used. The Au thin film was deposited 

onto a patterned polymer surface by vacuum sputtering (discharge power of 7.5 W, sputtering time 350 s, 

resulted in thickness 25 nm). 

The obtained gratings were spontaneously modified by soaking in 1 mM freshly prepared aqueous solution of 

4-carboxybenzenediazonium tosylate (ADT-COOH) and rinsed with water and ethanol twice. 

0.5 nmol of Au-C (NH2-terminated) was grafted to surface through EDC/sulfo-NHS activation. For DNA  

hybridization experiments the 10 mM Tris buffer was used. All samples were kept in a refrigerator at 5 ˚C 

2.3. Characterization techniques 

For characterization of the sample surface and nanomechanical properties the peak force AFM technique was 

used. AFM scratch tests were carried out on control sample on glass substrate by profiling across a scratch at 

an angle of 90° relative to the surface. SERS spectra were measured On ProRaman-L spectrometer with 785 

nm excitation wavelengths. The spectra were recorded at a resolution of 2 cm−1 in the 3000–200 cm−1 

wavenumber range. UV-Vis spectra were measured using Spectrometer Lambda 25 (Perkin-Elmer) in 300–

1100 nm wavelength range. 

2.4. CNN data processing 

All SERS spectra were evaluated using home-made CNN design with implementation of TensorFlow 2 

framework [13]. The collected data set consisted of individual spectra marked with corresponding categories. 

Spectra preprocessing involved their normalization and noise removing. The training was continued until 

manually observed convergence, which took 50 epochs in total, training and validation losses were converged 

to 0.1299 and 0.1291 respectively. 

3. RESULT AND DISCUSSION 

Recent advances in achieving low limits of detection and possibility to get massive spectral data in a short 

period of time make surface-enhanced Raman scattering a useful tool for the detection of DNA oligomers [10]. 

However, spectral differences are easily masked by background noise in complex biomolecules; thereby peak 

interference reduces universality of the method. On the other hand, artificially created convolutional neural 

network (CNN) is characterized by the ability to split the interfered peaks and reveal the most important regions 

of the spectrum [14] for the more accessible data interpretation. 

To get rid of the long sample preparation, polymer grating as a cost-effective and commercially available 

alternative for the biosensor platform was used. After sputtering of the plasmonic metal (Au), periodical 

structure of the grating provided the SERS effectivity.  The thickness of gold was optimized to get the highest 

enhancement factor (Figure 1). Optimization have demonstrated that the value of EF reach 2.3*106 in the case 

of 25 nm thick gold layer (350 s of sputtering). 
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Figure 1 Calculation of EF of gold grating: SERS spectra of R6G on Au grating with various thicknesses 

Activation of the low-reactive surface of the substrate was achieved by diazonium modification for 4-

carboxyphenyl groups grafting, which are then able to covalently bond with the amino-terminated OND (C-

OND) (Figure 2). 

 
Figure 2 Scheme of preparation of gold grating with grafted capture oligonucleotide (Au-C) 

 
Figure 3 Characterization of Au and Au—C: (a) UV-Vis spectroscopy, (b) Calculation of enhancement 

factor of Au using R6G (insert is simulation of EM field distribution); (c) SERS spectra; (c) survey XPS 

spectra 
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SERS spectra of Au-C confirm the successfulness of C-OND grafting via the appearance of new characteristic 

bands typical for the oligonucleotide structure. (Figure 3C). The attachment of 4-carboxyphenyl groups  

leads to the appearance of carboxyl group related peaks (1596 cm-1) and aromatic ring (786, 852, 1086, 1214 

cm-1). After the coupling with amino-terminated OND-C, there are new peaks in the region 780-1600 cm-1, 

which are typical for the oligonucleotide structure (bands at 778 cm−1, 1310 cm−1, 1359 cm−1, and 1422 cm−1).  

Also, the simulation of plasmon intensity across the grating was performed by finite-difference-time-domain 

method (FDTD). Numerical simulation of the electric field (EF) distribution on gold grating was performed for 

excitation with 785 nm light (Figure 3 A). Cross sections of one period of the structure yielded the distribution 

of the localized EF, suggesting that the energy is indeed concentrated in the slopes of the grating (Figure 3B). 

According to SEM and AFM images, morphology of the resulting substrate consisted of parallel wave-like 

patterns, with a height of about 168±3 nm and a period of about 710±7 nm (as measured from a cross-section 

profile, Figure 4). After the diazonium modification and covalent grafting of amino-terminated C-OND the 

pristine grating structure was conserved.  

 

Figure 4 profiles of Au and Au-C, inserts are magnified scans (0.4×0.4 µm2) 

To get spectral information about the presence of NDM-encoding gene (T-OND), samples already grafted with 

the first OND (Au-C) were immersed in a buffer solution to capture the second one. Massive SERS spectra 

collected prepared samples from were used as a NN input for the deep learning to identify the presence of 

NDM-encoding gene. 

The validation data were utilized for convolutional NN training to automated multiclass classification of the 

corresponding ONDs using a trained neural network for differentiation between various DNA. The deep 

convolutional neural network implemented within Keras was used for classification [15]. The network was 

trained on 75% of randomly selected data and verified on 25% of data. After verifying the convergence, the 

accuracy reached 99.92% with a level of confidence exceeding 95%.  

Also it should be noted that the total time from the beginning of the measurement to obtaining the results is 1-

1.5 hours with a preset program of the neural network that is a huge advantage compared to gold-standard 

cultural-based methods taking more than 24 hours. 

4. CONCLUSION 

Here we demonstrated the proof-of-concept performance of sensor by the analysis of ONDs related to specific 

genes responsible for antibiotic resistance. We utilized grafted SERS substrates for DNA capturing. Prepared 

sensor was involved in the hybridization with T-OND and other mutated ONDs. Further collected SERS spectra 
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measured by Raman spectrometer were utilized as a learning dataset for CNN. Several types of ONDs were 

detected with accuracy higher than 99,9% with a level of confidence exceeding 95%. 

As developed sensor is operated by the ONDs in the similar way as PCR methods does, it is applicable not 

only for bacterial resistivity but also for tumors, diseases, food and toxicants. This entitles our method to be a 

universal easy-to-performed platform for the detection of DNA oligomers. 
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