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Abstract 

A comparative study is reported for electrodeposited copper(I) thiocyanate layers (ca. 500 nm) on two types 

of conductive/semiconductive substrates; i) carbon (boron-doped diamond_BDD, glass-like carbon_GC), and 

ii) carbon-free F-doped SnO2 conducting glass (FTO). SEM and Raman evidence that electrodeposition from 

aqueous solution results in homogenous CuSCN layers with dominant thiocyanate ion bounded to copper 

through its S-end (Cu−SCN bonding), as in spin-coated CuSCN layers. Electrochemical impedance 

spectroscopy (EIS) confirms the p-type semiconductivity of layers with a flatband potential from 0.1 to 0.18 V 

vs. Ag/AgCl depending on the substrate type, and the acceptor concentration (NA) of  5 x 1020cm-3 in all cases. 

The flatband potentials determined from Mott-Schottky plots (EIS) are in good agreement with the Kelvin probe 

measurements. The blocking quality of CuSCN layers was tested using Ru(NH3)6
3+/2+ redox probe. CuSCN 

deposited on BDD substrate exhibits better blocking properties compared to CuSCN deposited on FTO. 
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1. INTRODUCTION 

Copper(I) thiocyanate (CuSCN) is a p-type semiconductor with wide band gap of 3.9 eV, hole mobility 

0.001−0.1 cm2·V-1·s-1 [1] and good optical transparency [2] applicable as a hole transport material (HTM) in 

dye-sensitized solid-state solar cells [3,4] and perovskite solar cells [5,6]. Cathodic electrodeposition from 

aqueous solution containing SCN- and Cu2+ is one of the low-temperature deposition techniques for CuSCN 

layers [2,3,7-10] in addition to spray deposition [11], drop-casting [12] or spin coating [13]. The 

electrodeposition benefits from avoiding organic solvents (e.g. alkyl sulfides). EIS is a useful technique to study 

the double-layer structure and charge transfer at the electrochemical interface. Based on Mott-Schottky plot 

(MS) obtained by fitting impedance spectra using appropriate equivalent circuit, the flatband potential (Efb), 

and acceptor (NA) or donor (ND) concentration can be determined [14]. However, the experimental flatband 

potentials depend on various factors, such as i) the presence of deliberately added dopants, ii) differences in 

the crystallographic orientation, iii) a difference in the pH of zero charge, etc. [15]. The flatband positions can 

be also determined from the work function using Kelvin probe measurements after the corresponding 

conversion to the electrochemical potential scale. This technique is based on measurement of changes in 

contact potential difference (CPD) between the studied surface and a reference probe [16,17]. Here we report 

the electrodeposition from aqueous solution of hole-transporting CuSCN layers under the same conditions on 

different types of substrates (boron-doped diamond as p-type semiconductor, FTO glass as n-type 

semiconductor, and glass-like carbon). The structure and electrochemical properties of the electrodeposited 

CuSCN layers were compared with those prepared by the spin-coating method [5].  

2. EXPERIMENTAL 

2.1. CuSCN layer preparation 

CuSCN thin films were prepared by electrodeposition from aqueous electrolyte solution according Ni et al. [2] 

on: i) boron-doped diamond with B/C ratio of 1000 ppm (BDD 1000) and 4000 ppm (BDD 4000) as detailed 
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elsewhere [18], ii) glass-like carbon (GC, 3000C from Goodfellow, 400 Ohm/cm), and iii) F-doped SnO2 

conducting glass (FTO, TEC 15 from Libbey-Owens-Ford, 15 Ohm/sq). The electrodeposition of CuSCN was 

performed potentiostatically at -0.5V vs. Ag/AgCl for 30 minutes; Pt mesh was a counter electrode and Ag/AgCl 

with 3M KCl was a reference electrode. The electrolyte solution consists of cupric sulfate pentahydrate (99.9%, 

Sigma-Aldrich) and potassium thiocyanate (99.0%, Sigma-Aldrich) as precursors and TEA (99.0%, Sigma-

Aldrich) as a chelating reagent for Cu2+ cations. Before electrodeposition, the CuSO4/TEA + 0.1M KSCN 

solution was stirred for 1 h and then stored for 24 h.  

2.2. Structural and chemical characterization 

The surface morphology was investigated by field emission scanning electron microscopy (FESEM, S-4800 

Hitachi). SEM images were acquired at an acceleration voltage of 3 kV at a working distance of 5-6 mm. 

Raman spectra were excited by 514 nm laser (power of 1 mW) and recorded by a Labram HR spectrometer 

(Horiba Jobin-Yvon) interfaced to an Olympus microscope (objective 100×). The spectrometer was calibrated 

by the F1g mode of Si at 520.2 cm−1. Kelvin probe measurements used KP020 instrument (KP Technology 

Ltd.). The gold probe was positioned close to the sample surface and the contact potential difference was 

measured. Work functions were calibrated using a freshly peeled-off highly oriented pyrolytic graphite; its work 

function was set to 4.6 eV [17]. All electrochemical measurements were performed in a three-electrode cell 

(working electrode: CuSCN film, counter electrode: Pt mesh, reference electrode: Ag/AgCl with 3M KCl). The 

electrolyte solution was 0.5M KCl (Sigma Aldrich) saturated with CuSCN (pH 6). Electrochemical experiments 

were carried out on AUTOLAB PGSTAT128N potentiostat (Metrohm) controlled by GPES4 software (cyclic 

voltammetry, CV) and FRA software (EIS). The electrochemical impedance spectra were measured at 

frequencies from 100 kHz to 0.1 Hz. Electrochemical test of blocking used of 0.5mM [Ru(NH3)6] Cl3 (Sigma 

Aldrich, 98%) in 0.5M KCl (Sigma Aldrich, ≥99%) sat. with CuSCN. Electrochemical measurements were 

carried out in a closed cell under argon atmosphere.  

3. RESULTS AND DISCUSSION 

3.1. Structural characterization of CuSCN layers 

Figure 1A displays plan view of dense fine-crystalline morphology (trigonal crystallites) of homogeneously 

electrochemically grown CuSCN layer onto FTO substrate. The CuSCN layer thickness observed from cross 

sectional SEM image (Figure 1B) is about 550 nm and is comparable (same as morphology) with CuSCN 

layers prepared on BDD and GC substrate (not shown). The surface morphology of electrodeposited CuSCN 

layers is distinctly different from layers prepared by spin coating from diethyl sulfide solution and the crystal 

size is significantly larger [5]. 

 

Figure 1 SEM (A_plain view, B_cross section) of CuSCN on FTO glass substrate (CuSCN/FTO). Inset of A) 

shows CuSCN on FTO substrate (background of the chart A). Chart C) shows the Raman spectra of CuSCN 

on GC (green line), BDD 1000 (light blue line), BDD 4000 (dark blue line), and FTO (red line) substrates. 

Black lines show the reference spectra of blank substrates. The spectra are offset for clarity. 
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Figure 1C shows Raman spectra of CuSCN layers deposited on different types of substrates (CuSCN/GC, 

CuSCN/BDD 1000, CuSCN/BDD 4000, and CuSCN/FTO). The Raman spectra of blank substrates are also 

shown for comparison. Independent of the substrate type the Raman spectra exhibit the same peak positions 

as the CuSCN films prepared by spin coating [5]. The peaks of CN stretching are located at higher frequency 

region, i.e. the weaker peak at 2115 cm-1 for isothiocyanate which is a less energetically favourable resonance 

form of SCN ion (Cu−NSC bonding) and the most intense peak at 2173 cm-1 for the second resonant form 

thiocyanate (Cu−SCN bonding). In the low frequency range region 100–1000 cm-1 where are located peaks 

indicating the presence of two possible SCN resonant forms are clearly visible the Raman peaks corresponding 

to the Cu-S stretching at 202 and 745 cm-1, SCN bending at 431 cm-1, and Cu-N stretching at 243 cm-1.  

3.2. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 

The CuSCN layers were electrochemically studied in 0.5M KCl sat. with CuSCN aqueous electrolyte solution 

in various potential ranges from -0.3V to 0.5V. The set of cyclic voltammograms (CVs) is illustrated in 

Figure 2A for CuSCN/BDD substrates, in Figure 2B for CuSCN/GC and CuSCN/FTO substrates. In all cases, 

with increasing potential window the capacitances, determined at 0 V and related to the projected geometric 

surface area, increase (Figure 2C) due to electrochemical reactions occurring on the electrode surface. As 

CuSCN is p-type semiconductor, cyclic voltammograms show no capacitive charging in cathodic direction, 

while with increasing positive potential the anodic current increases depending on the substrate type. For the 

anodic vertex potentials from 0.3 V to 0.5 V (Figure 2D), the increase of capacitance is more evident for 

CuSCN/FTO (0.6 mF/cm2) and CuSCN/GC (0.8 mF/cm2) than for CuSCN/BDD (0.3 mF/cm2). This difference 

is caused by the variability of substrates used for CuSCN electrodeposition, i.e., the width of potential window 

(PW) of capacitive charging depends on the substrate type. The reason for the lowest capacitance values of 

CuSCN/BDD is that BDD has a wide electrochemical potential window in aqueous media (more than 3V for 

high quality and highly doped BDD) and low double-layer capacitance (< 12 μm/cm2), as previously reported 

[14,18-21]. Depending on BDD film quality (sp2 carbon content) and doping level (B/C ratio in the gas phase) 

we distinguish between high- and low-quality diamonds, as well as semiconducting (< 3 x 1020 B atoms cm-3 

[22]) or metallic. For CuSCN electrodeposition, we used two types of BDD; 1) with lower quality and doping 

level denoted BDD 1000, and 2) high quality with high doping (BDD 4000). The structure and electrochemical 

properties of these BDDs were described in [18]. From the inset of Figure 2C it is obvious, that CuSCN/BDD 

4000 layer exhibits slightly lower capacitance than the CuSCN/BDD 1000. The reason is the higher quality of 

the pristine BDD 4000 (compared to BDD 1000) containing no sp2 carbon impurities (Raman spectrum in 

Figure 1C), where oxygen-containing groups are formed causing a decrease in the potential BDD window and 

an increase in background capacitive currents [18]. The GC (20 μF/cm2 [5]) and FTO (30 μF/cm2 [5]) substrates 

increase the capacitance of CuSCN layer in the whole range of potential windows compared to the BDD 

substrates due to various structure of surface containing oxygen groups where redox reactions occur. 

 

Figure 2 Cyclic voltammograms of CuSCN on A) boron-doped diamond (CuSCN/BDD 1000_light blue line, 

CuSCN/BDD 4000_dark blue line), B) glass-like carbon (CuSCN/GC_green line) and FTO glass substrate 

(CuSCN/FTO_red line). The scan rate of 100 mV/s. Plots in A) and B) are offset for clarity, but the current 

scale is identical for all voltammograms (see the scale bar). C) shows the capacitance of CuSCN in potential 

ranges from -0.3V–0.1V (PW=0.4) to -0.3V–0.5V vs. Ag/AgCl (PW=0.8) calculated from CVs in A) and B). 
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The blocking properties of electrodeposited CuSCN layer were tested using FTO and BDD 4000 substrates 

(Figure 3). In our previous work [5] the blocking function of spin-coated CuSCN was found to depend on details 

of spin-coating deposition. Here we used the same Ru(NH3)6 
3+/2+ 

redox system due to suitable redox potential and stability of 

aqueous solution. Figure 3 shows that CuSCN/BDD 4000 layer 

(blue line) has a better blocking function which is quantified as the 

relative pinhole area [23] (Au/A0) of 42% compared to CuSCN/FTO 

(red line) with Au/A0 = 64%, referenced to blank FTO (black line). 

The pinhole defect type A of the CuSCN layer was detected for 

both substrates [23]. The larger Au/A0 values obviously reflect the 

coarse morphology of our film (Figure 1) compared to spin-coated 

ones; nevertheless, this parameter is also known to depend 

dramatically on details of the spin-coating protocol [5]. 

 

Figure 3 Cyclic voltammograms of CuSCN on FTO (red line) and BDD 4000 (blue line) substrates. Blank 

FTO substrate (black line) is shown for comparison. Electrolyte solution 0.5mM Ru(NH3)6Cl3 in 0.5M KCl sat. 

with CuSCN (pH 6) and the scan rate 100 mV/s. 

Figure 4 shows the Mott-Schottky plots determined from electrochemical impedance spectroscopy (EIS) and 

fitted using the RC equivalent circuits, where the space charge capacitance is represented by constant phase 

element (CPE) [14]. The negative slope of MS plots of CuSCN in all cases confirmed the p-type conductivity. 

Similarly, blank BDD (1000 and 4000) shows the p-type semiconducting behaviour (inset of Figure 4A and 

Figure 4B). For the calculation of the acceptor concentration NA and flatband potential Efb (Table 1), we used 

the Mott-Schottky equation [14]. The found flatband potentials depend on the substrate type, ie. the Efb is lower 

in the case of carbon (BDD, GC) substrates compared to carbon-free FTO substrate. This trend is the same 

as in our previous work on spin-coated CuSCN layers [5]. For the CuSCN/BDD are the Efb values as follows:  

0.1 V (BDD 1000) and 0.13 V (BDD 4000) vs. Ag/AgCl compared to Efb of blank BDDs (1.04 V for BDD 1000 

and 1.3 V for BDD 4000) (Figure 4A and Figure 4B). The deposition on conductive GC substrate leads to the 

higher Efb = 0.15 V (Figure 4C). Despite the fact, that the FTO is a n-type semiconductor (Efb = -0.5 V vs. 

Ag/AgCl, Figure 4D), the p-semiconducting character of the CuSCN layer dominates and the flatband potential 

is 0.18 V vs. Ag/AgCl. This value is slightly higher, but still in good agreement with the value of 0.12 V measured 

on spin-coated CuSCN layers on FTO [5]. The acceptor concentrations of CuSCN layers on GC, BDD, and 

FTO are in the range of 4.7 to 5.4 x 1020 cm-3 (Table 1) comparable to spin-coated CuSCN layers [5]. KP 

measurements give the work function for CuSCN layers on FTO, GC, and BDD substrates as; 4.931 eV, 4.833 

eV, and 4.575 eV, respectively. These work functions can be converted to the corresponding flatband potential. 

Table 1 confirms that both techniques give well comparable data. 

Table 1 The acceptor concentrations (NA) and flatband potentials (Efb) for CuSCN on various substrates  

(CuSCN/BDD 1000, CuSCN/BDD 4000, CuSCN/GC, and CuSCN/FTO) determined by 

electrochemical impedance spectra from Mott-Schottky (MS) plots and Kelvin probe (KP) method 

 CuSCN/BDD 1000 CuSCN/BDD 4000 CuSCN/GC CuSCN/FTO 

NA (cm-3) (MS) 4.8 x 1020 4.8 x 1020 4.7 x 1020 5.4 x 1020 

Efb (V) vs Ag/AgCl (MS) 0.1  0.01 0.13  0.04 0.15  0.02 0.18  0.02 

Efb (V) vs.Ag/AgCl (KP) - 0.14  0.03 0.13  0.03 0.24  0.05 
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Figure 4 Mott−Schottky (MS) plots from EIS of CuSCN on A) boron-doped diamond CuSCN/BDD 1000_light 

blue full symbols, B) CuSCN/BDD 4000_dark blue full symbols, C) glass-like carbon (CuSCN/GC_green full 

symbol) and D) FTO substrate (CuSCN/FTO_red full symbols). The open symbols show the MS of 

substrates. Electrolyte solution was 0.5M KCl sat. with CuSCN (pH 6). 

4. CONCLUSION 

Electrochemical deposition on different substrates (boron-doped diamond, glass-like carbon, and FTO 

conductive glass) from aqueous solution yielded homogenous CuSCN layers with a thickness of about 550 

nm measured by SEM. The capacitances and flatband potentials depend on the substrate type. The 

determined flatband potentials from two different methods (electrochemical impedance spectroscopy and 

Kelvin probe) considering the experimental errors were in good agreement. The CuSCN deposited on BDD 

substrate exhibits better blocking function (smaller relative pinhole area) compared to CuSCN deposited on 

FTO substrate.  

ACKNOWLEDGEMENTS   

The authors acknowledge the support from the Czech Science Foundation (Contract No. 18-08959S).  

REFERENCES 

[1] WIJEYASINGHE, N., EISNER, F., TSETSERIS, L. et al. p-Doping of Copper(I) Thiocyanate (CuSCN) Hole-

Transport Layers for High-Performance Transistors and Organic Solar Cells. Advanced Functional Materials. 

2018, vol. 28, pp. 1802055. 

[2] NI, Y., JIN, Z., FU, Y. Electrodeposition of p-Type CuSCN Thin Films by a New Aqueous Electrolyte With 

Triethanolamine Chelation. Journal of the American Ceramic Society. 2007, vol. 90, no. 9, pp. 2966-2973. 

[3] SUN, L., ICHINOSE, K., SEKIYA, T., et al. Cathodic Electrodeposition of p-CuSCN Nanorod and Its Dye-

Sensitized Photocathodic Property. Phys. Proc. 2011, vol. 14, pp. 12. 

[4] PERERA, V.P.S., SENEVIRATHNA, M.K.I., PITIGALA, P.K.D.D.P., et al. Doping CuSCN Films for Enhancement 

of Conductivity: Application in Dye-Sensitized Solid-State Solar Cells. Sol. Energy Mater. Sol. Cells. 2005, vol. 86, 

pp. 443. 

[5] KAVAN, L., ŽIVCOVÁ, Z.V., HUBÍK, P., et al. Electrochemical Characterization of CuSCN Hole-Extracting Thin 

Films for Perovskite Photovoltaics. ACS Applied Energy Materials. 2019, vol. 2, pp. 4264-4273. 

[6] MATEBESE, F., TAZIWA, R., MUTUKWA, D. Progress on the Synthesis and Application of CuSCN Inorganic 

Hole Transport Material in Perovskite Solar Cells. Materials. 2018, vol. 11, pp. 2592. 

[7] CHAPPAZ-GILLOT, C., SALAZAR, R., BERSON, S., et al. Room temperature template-free electrodeposition of 

CuSCN nanowires. Electrochemistry Communications. 2012, vol. 24, pp. 1-4. 

[8] SUN, L., HUANG, Y., ANOWER HOSSAIN, M., et al. Fabrication of TiO2/CuSCN Bulk Heterojunctions by Profile-

Controlled Electrodeposition. Journal of The Electrochemical Society. 2012, vol. 159, pp. D323-D327. 

[9] RAMÍREZ, D., ÁLVAREZ, K., RIVEROS, G., et al. Electrodeposition of CuSCN seed layers and nanowires: A 

microelectrogravimetric approach. Electrochimica Acta. 2017, vol. 228, pp. 308-318. 



Oct 21st – 23rd 2020, Brno, Czech Republic, EU 

 

 

[10] SHLENSKAYA, N.N., TUTANTSEV, A.S., BELICH, N.A., et al. Electrodeposition of porous CuSCN layers as 

hole-conducting material for perovskite solar cells. Mendeleev Communications. 2018, vol. 28, pp. 378-380. 

[11] YANG, I.S., SOHN, M.R., SUNG, S.D., et al. Formation of pristine CuSCN layer by spray deposition method for 

efficient perovskite solar cell with extended stability. Nano Energy. 2017, vol. 32, pp. 414-421. 

[12] CHAVHAN, S., MIGUEL, O., GRANDE, H.J., et al. Organo-metal halide perovskite-based solar cells with CuSCN 

as the inorganic hole selective contact. Journal of Materials Chemistry A. 2014, vol. 2, pp. 12754-12760. 

[13] ARORA, N., DAR, M.I., HINDERHOFER, A., et al. Perovskite solar cells with CuSCN hole extraction layers yield 

stabilized efficiencies greater than 20%. Science, 2017. vol. 358, pp. 768-771. 

[14] ŽIVCOVÁ, Z.V., PETRÁK, V., FRANK, O., et al. Electrochemical impedance spectroscopy of polycrystalline 

boron-doped diamond layers with hydrogen and oxygen terminated surface. Diamond and Related Materials. 

2015, vol. 55, pp. 70-76. 

[15] HANKIN, A., ALEXANDER, J.C., KELSALL, G.H. Constraints to the flat band potential of hematite photo-

electrodes. Physical Chemistry Chemical Physics. 2014, vol. 16, pp. 16176-16186. 

[16] BONNET, J., SOONCKINDT, L., LASSABATÈRE, L. The Kelvin probe method for work function topographies: 

technical problems and solutions. Vacuum. 1984, vol. 34, pp. 693-698. 

[17] BEERBOM, M.M., LÄGEL, B., CASCIO, A.J., et al. Direct comparison of photoemission spectroscopy and in situ 

Kelvin probe work function measurements on indium tin oxide films. Journal of Electron Spectroscopy and 

Related Phenomena. 2006, vol. 152, pp. 12-17. 

[18] ŽIVCOVÁ, Z.V., FRANK, O., PETRÁK, V., et al. Electrochemistry and in situ Raman spectroelectrochemistry of 

low and high quality boron-doped diamond layers in aqueous electrolyte solution. Electrochimica Acta. 2013, vol. 

87, pp. 518-525. 

[19] MACPHERSON, J.V. A practical guide to using boron-doped diamond in electrochemical research. Physical 

Chemistry Chemical Physics. 2015, vol. 17, pp. 2935-2949. 

[20] KAVAN, L., VLCKOVA ZIVCOVA, Z., PETRAK, V., et al. Boron-doped Diamond Electrodes: Electrochemical, 

Atomic Force Microscopy and Raman Study towards Corrosion-modifications at Nanoscale. Electrochimica Acta. 

2015, vol. 179, pp. 626-636. 

[21] VLČKOVÁ ŽIVCOVÁ, Z., MORTET, V., TAYLOR, A., et al. Electrochemical characterization of porous boron-

doped diamond prepared using SiO2 fiber template. Diamond and Related Materials. 2018, vol. 87, pp. 61-69. 

[22] ACHATZ, P., BUSTARRET, E., MARCENAT, C., et al. Metal–insulator transition and superconductivity in highly 

boron-doped nanocrystalline diamond films. physica status solidi (a). 2009, vol. 206, pp. 1978-1985.  

[23] KAVAN, L., TÉTREAULT, N., MOEHL, T., et al. Electrochemical Characterization of TiO2 Blocking Layers for 

Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2014, vol. 118, pp.16408-16418.  


