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Abstract 

The area of "green" energy carriers utilization is rapidly developing in the world today. Renewable hydrogen 

has promising potential as an ecologically safe energy carrier. However, production, storage, transportation 

and utilization of hydrogen possess certain risks due to the high likelihood of ignition. In this paper, we have 

demonstrated the design and realization of the colorimetric hydrogen sensor in different liquids. A proposed 

colorimetric sensor is based on corel-shell Au@Pd nanoparticles, additionally grafted by metal-organic 

framework IRMOF-20 layer, responsible for hydrogen entrapping.  The combination of localized surface 

plasmon, high affinity of the palladium surface in hydrogen sorption and selectivity of IRMOF-20 towards this 

gas leads to apparent color change of nanoparticles suspension in hydrogen presence. The proposed 

approach is favored by high sensitivity, ease of use, low detection limit, and fast response time.  
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INTRODUCTION 

Under the terms of the Paris Agreement, sustainable energy technological development is an important part 

of the fight against climate change. After this decision was taken, the demand for "green" energy sources 

continues to grow [1]. In this regard, renewable hydrogen has promising potential as a green energy carrier 

[2]. However, the production, storage and utilization of hydrogen is associated with certain risks due to the 

increased likelihood of inflammation [3-7]. 

Colorimetric gas sensors may be the best solution to the problems associated with determining the presence 

of hydrogen in air. In particular, colorimetric sensors based on the principle of localized surface plasmon 

resonances of silver or gold nanoparticles have a particularly high potential. These sensors change colour in 

the presence of targeted compounds under room conditions, which is useful in everyday life. Colorimetric 

sensors can also be made compact and without the presence of electronic components [8,9]. 

Metal–organic frameworks (MOFs) can improve sensor selectivity and sensitivity through the introduction of 

additional functionality and surface specificity. MOF is a well-known class of porous materials, the main 

purpose of which is the capture of gas molecules, including hydrogen molecules (IRMOF-20) [10-19]. 

1. EXPERIMENTAL 

1.1. Materials 

Deionized water (EMD MILLIPORE), thieno[3,2-b]thiophene-2,5-dicarboxylic acid (≥99.0%), zinc nitrate 

(99.999%), dimethylformamide (≥99%), N,N-Diethylformamide (≥99%), acetonitrile (HPLC Plus, ≥99.9%). %), 
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methanol (analytical standard), dimethyl sulfoxide (≥99%), chloroform (analytical standard) dichloromethane 

(99.8%), hydrochloric acid, trisodium citrate, gold(III) chloride solution, palladium(II) chloride were ordered from 

Sigma-Aldrich and used without additional purification. 4-carboxybenzenediazonium tosylate (ADT-COOH) 

was prepared according to [20]. Preparation of IRMOF-20-modified surface was carried out according to 

previous work [21]. 

1.2. Sample preparation 

Gold nanoparticles were prepared by the Turkevich method [22]. A seed-mediated growth method was used 

to prepare bimetallic Au@Pd nanoparticles with an Au core and a Pd shell structure [23]. Au@Pd particles 

were spontaneously modified by diazonium salt by dipping for 2 hours in a freshly prepared aqueous solution 

of ADT-COOH (concentration 1 mM). After the modification, the nanoparticles were centrifugated and washed 

by water and methanol. 

Later, the modified Au@Pd were immersed for some time in the mother liquid IRMOF-20. To clean the pores 

of IRMOF-20 from the solvent in which the MOF was prepared, nanoparticles with a layer of a metal-organic 

framework were immersed in dichloromethane for several days. Figure 1 schematically shows the preparation 

route of Au@Pd with IRMOF-20 layer. 

 

Figure 1 Schematic representation of Au@Pd grafting by -COOH and IRMOF-20 

The prepared Au@Pd were dispersed in various solvents of methanol, DMSO, DMF, CH2Cl2, H2O. The 

hydrogen or carbon dioxide were flown through these solutions for 20 minutes. 

1.3. Measurement Techniques 

Raman spectra were measured using a ProRaman-L (laser power 30 mW) spectrometer with an excitation 

wavelength of 785 nm. Ultraviolet–visible spectroscopy (UV–Vis) spectra were measured using Spectrometer 

Lambda 25 (Perkin-Elmer) in 300–1100 nm wavelength range.  

2. RESULTS AND DISCUSSION 

Grafting of nanoparticles surface by -COOH and subsequent IRMOF-20 formation were examined using UV-

Vis (Figure 2A) and SERS (Figure 2B) measurements. UV-Vis spectra (Figure 2A) indicate the presence of 

absorbance band near 520 nm.  After the –COOH immobilization the band is shifted towards to UV region. 

Further shifts occur after the formation of IRMOF layer towards to NIR region.  As it is evident from the SERS 

results (Figure 2B), after the grafting procedure, the Raman bands, typical for ADT-COOH and IRMOF-20, 

become apparent. The obtained results confirm grafting during the both stages of surface modification. 
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Figure 2 (A) The UV-Vis absorption spectra of: core-shell Au@Pd nanoparticles, Au@Pd grafted by ADT-

COOH, and Au@Pd decorated with IRMOF20 film, (B) Raman spectra of pristine gold nanoparticles Au@Pd 

grafted by ADT-COOH, and Au@Pd decorated with IRMOF20 film (right part shows the Raman peak 

affiliation) 

 

Figure 3 UV-Vis spectra and photos of Au@Pd nanoparticles in different solvents before and after blowing 

hydrogen and carbon dioxide through: (A) – DMF, (B) – CH3OH, (C) – DMSO, (D) – H2O, (E) – CH2Cl2   
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The changes of the IRMOF-20 optical properties due to hydrogen and carbon dioxide entrapping were 

investigated by UV-Vis absorbance spectra. Figure 3 shows that when carbon dioxide was blown through 

nanoparticles suspension there were no visible changes in its colour and no displacement of the plasmon 

absorption peak. However, when hydrogen was bubbled through suspension of nanoparticles in DMF and 

methanol. The colours were changed. This change was detectable by eyes: In particular, the Figure 3A shows 

the nanoparticles suspension in DMF and colour changing from gray to transparent. In turn, in methanol 

suspension the hydrogen presence induces the colour shift from blue to transparent. 

CONCLUSION 

In this article, we propose a new method for preparation of colorimetric sensors based on bimetallic Au@Pd 

core-shell nanoparticles with an additional layer of organometallic frameworks for fast and selective detection 

of hydrogen in organic and inorganic solvents (DMF, CH3OH, DMSO, CH2Cl2, and water). 

The formation of an IRMOF-20 layer on Au@Pd nanoparticles provides possibility of efficient hydrogen 

detection, through monitoring of the shift of plasmon resonance wavelength position, and, consequently, 

changes of the suspension colour. The unique properties of IRMOF-20 ensure the sensitivity and selectivity of 

the developed sensor to hydrogen even in the presence of other gases. 
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