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Abstract 

Titanium nitride (TiN) is largely applied as protective nanolayer of medical titanium implants due to its 

significant positive influence on the surface properties such as friction and corrosion resistance. During the 

process of its phase formation, occurrence of the point defects is probable and can potentially affect various 

material properties, e.g. change the lattice parameters. The surface energies of 8 crystallographic planes and 

effects of nitrogen vacancies on the lattice parameter in rock salt-like structure of TiN (δ-TiN) were studied 

using ab-initio method of density functional theory (DFT) with the generalized gradient approximation functional 

(GGA) as parametrized by Perdew, Burke and Ernzerhof (PBE). TiN supercell with 64 atomic positions was 

used for the calculation of defects influence and the results are thoroughly discussed in the context of available 

theoretical and experimental literature data. The linear decrease of lattice parameter with the increasing 

presence of nitrogen vacancies up to ca. 80 % was observed. The surface energy of (100) crystallographic 

plane is two times lower (1.499 J/m2) than for the rest of the studied planes. 

Keywords: Titanium nitride, TiNx, ab initio simulation, density functional theory, DFT, vacancies, lattice 
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1. INTRODUCTION 

Titanium and its alloys are nowadays widely used as implant materials in biomedical industry due to their 

generally great mechanical, physical and chemical properties. By various types of surface treatment, their 

surface properties (such as friction or corrosion resistance) are often suitably modified without changing the 

required bulk ones (such as internal bulk modulus) [1]. One of the most prominent and controllable surface 

modification methods is the implantation of charged particles (e.g. ions of nitrogen, hydrogen, oxygen, 

potassium, carbon, argon, silver) under the top surface layer intervening depth of the sample typically about 

100 nm [2]. Changes of material properties are primarily caused by the formation of point defects, dislocations 

and potential new phases in the affected area, all of which are directly related to the depth concentration 

profiles of implanted ions and their dose [3]. In case of N ion implantation into the α-Ti matrix (P63/mmc, #194) 

[4], titanium nitride (TiN) with rock salt-like structure (δ-TiN, Fm3̅m, #225) is primarily formed [5].  

Metallic TiN has wide range of interesting properties such as high melting point, ultra-hardness, excellent 

mechanical resistance or good electric and thermal conductivity [6]. Therefore, it is being largely applied as 

coating nanolayer. During the modification of α-Ti with N ion implantation, the occurrence of high-density of N 

and Ti vacancies, substitutions or interstitials can significantly modify physical properties in the implanted zone, 

e.g. change the lattice parameters. Thus, knowledge of point defects and their influence is essential for 

understanding the behavior of our material. Particularly other important characteristics are the surface energies 
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as they play significant role in epitaxial film growth of TiN or in the explanations of particle (e.g. hydrogen, 

oxygen) absorptions on its given surface layer [7]. 

It is often desirable to have theoretical predictions of all the mentioned characteristics and effects as they can 

provide a meaningful insight to the material behaviour or the processes occurring during its modifications. 

Development of ab-initio simulation methods, such as density functional theory (DFT), allowed performing 

aforementioned predictions and had become broadly used in the last decades. In this study, we provide DFT 

predictions of the mean effects of vacancies on the lattice parameter in rock salt-like structure of TiN. We also 

present the calculations of surfaces energies of TiN for 8 crystallographic planes and compare all our results 

with published studies for the cases where data was available.  

2. COMPUTATIONAL DETAILS 

DFT simulations were performed within the CASTEP (Cambridge Serial Total Energy Package) code [8]. The 

exchange-correlation energy functional was approximated by means of the GGA in PBE parametrization [9]. 

Iterative solutions of Kohn-Sham equations are derived with plane-wave basis for linear expansion of the 

electronic wavefunctions. Suitable value of energy cutoff 𝐸cut, determining the number of plane waves used in 

the expansion, was found by the following algorithm: The total free energy of the fcc-TiN unit cell (with 8 atoms)  

was calculated with predefined ultra-fine settings while changing only the values of 𝐸cut ranging from 140 to 

600 eV with the step of 20 eV (Figure 1, Left, red marks). We set the energy cut-off at 360 eV to achieve the 

calculation convergence of at least 0.02 eV per atom with respect to this parameter. Similar convergence 

algorithm was used to find the suitable parameters of the Monkhorst-Pack k-point mesh [10] for the sampling 

of Brillouin zone. We selected 8 × 8 × 8 (Figure 1, Left, blue marks) as the energy convergence per atom 

with respect to the k-point sampling is here lesser than 0.01 eV. To further reduce the number of plane wave 

coefficients, we used the ultrasoft pseudopotential of the Vanderbilt type [11]. The system was considered be 

fully relaxed when the magnitude of the forces acting on all atoms was smaller than 0.01 eV/Å and the 

difference of energy per atom between consecutive iterates has decreased under 5 ∙ 10-6 eV/atom. 

   

Figure 1 Left: Convergence of the fcc TiN total energy per atom with respect to the cutoff energy parameter 

𝐸cut and 𝑎x × 𝑎x × 𝑎x k-points from the Monkhorst-Pack grid. Right: Quality of DFT data fit with  

Birch-Murnaghan equation of state. 

For the surface energies calculations, we have used a grid of 8 × 8 × 1, where × 1 is the usual choice  

in the direction perpendicular to the surface. This accounts the fact that the length of the supercell along this 

direction includes a vacuum region. Calculations of vacancies were performed on the TiN supercell containing 

64 atomic sites. Monkhorst-Pack grid was reduced to 4 × 4 × 4 as the lattice parameters are now twice the 

bigger the unit cell containing 8 atoms. This provides a set of k-points with equal density in each axis direction 

of the reciprocal space. The placement of defects for their given number was randomized using a custom script 

in PERL language. Being interested only in mean effects of vacancies on lattice parameters, we kept  

the supercells as cubic and calculated their dependences of total energy per atom on the lattice parameter 𝑎. 
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The range of changes of 𝑎 was within 10 % of the computed equilibrium value of non-defected TiN (8.492/2 = 

4.246 Å) with the step of 0.04 Å. The obtained dependences were fitted by the Birch-Murnaghan equation of 

states (EOS) [12]: 

 𝐸(𝑎) = 𝐸c +
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where fitting parameters have the following physical meaning: 𝐸c is the cohesive energy, 𝑎e the equilibrium 

lattice parameter, 𝐵 the bulk modulus and 𝐵′ its derivation. Quality of this fit is illustrated for the one case in 

Figure 1, Right. 

3. RESULTS AND DISCUSSION 

3.1. Calculations of TiN surface energies 

We have studied the TiN surface energies 𝐸DFT
Surf of (100), (110), (111), (211), (221), (311), (321) and (322) 

cleavage planes. The bulk energy per atom was set as the energy of geometrically optimized TiN structure. 

Resulting lattice parameter 𝑎 = 4.246 Å was in very good agreement with the experimental value 4.238 Å [13] 

(relative deviation of 0.2 %). After that, all the crystallographic planes were cleaved from this optimized 

structure. Neither the symmetric nor the asymmetric surface relaxations were allowed as well as the surface 

reconstructions.  In all the considered planes (except for (111) and (311)), we have used the smallest possible 

surface cell for all slab calculations and tested the effect of different numbers of atomic layers ranging from 4 

to 12 (with 8 to 24 atoms) on the surface energy. For (111) and (311), we had to choose non-primitive surface 

cell in order to keep the consistence of the same number of atoms in layers with the rest of the studied planes. 

Since (111) and (311) surfaces have single species termination in rock salt-like structure, there are three 

possibilities of cleavage. Both sides are either Ti or N terminated, or one is terminated with Ti layer while the 

other one with N. We have chosen the later, mixed state. This should lead to an average value of surface 

energy between the two different terminations with the same atomic species [3]. 

 

Figure 2 Descending order from the most stable surface to the least stable one in TiN. Given data are 

calculated by means of the GGA-PBE functional with 12 atomic layers (24 atoms in the slab) and 10 Å 

thickness of vacuum. For each plane, corresponding atomic surface density is also shown. 

Resulted surface energies are summarized in Table 1. Our values are well converged with respect to the 

numbers of atomic layers in the slab as the surface energy changes are not greater than 0.1 J/m2 from 8 layers 

(16 atoms). Descending order from the most stable surface to the lowest stable one is shown in Figure 2 with 
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the corresponding atomic surface densities (energies are in units J/m2 = 16.022 eV/Å2 and for the vacuum 

thickness of 10 Å with 24 atoms in the slab). Typically, the most stable surfaces are the ones with highest 

surface densities. This agrees for the (100) (1.499 J/m2) as it has significantly higher density (22.7 %) than the 

second most stable (110) (3.006 J/m2) surface with 16.1 %. 

Table 1 DFT GGA-PBE calculations of TiN surface energies. Vacuum thickness was set to 10 Å. Surface 

relaxations and reconstructions are not considered. For the (111) and (311), one side was terminated 

with N atomic plane while the other with Ti. Comparison (percentage of the relative deviation) with 

the closest reference value [3,7] is given for the cleavage planes where data was found. 

N.  of 
layers  

(atoms) 

𝑬𝐏𝐁𝐄
(𝟏𝟎𝟎)

 
J/m2) 

𝑬𝐏𝐁𝐄
(𝟏𝟏𝟎)

 
(J/m2) 

𝑬𝐏𝐁𝐄
(𝟏𝟏𝟏)

 
(J/m2) 

Ti-N term. 

𝑬𝐏𝐁𝐄
(𝟐𝟏𝟏)

 
(J/m2) 

𝑬𝐏𝐁𝐄
(𝟐𝟐𝟏)

 
 (J/m2) 

𝑬𝐏𝐁𝐄
(𝟑𝟏𝟏)

 
(J/m2) 

Ti-N term. 

𝑬𝐏𝐁𝐄
(𝟑𝟐𝟏)

 
 (J/m2) 

𝑬𝐏𝐁𝐄
(𝟑𝟐𝟐)

 
 (J/m2) 

4 (8) 
1.580  

(+3.3 %) 
3.013 

(+5.0 %) 
4.420 

(+5.3 %) 
3.925 3.977 3.151 3.538 4.519 

6 (12) 
1.525  

(-0.3 %) 
3.011 

(+4.9 %) 
4.163  

(-0.8 %) 
3.782 4.072 3.098 3.387 4.341 

8 (16) 
1.529  

(-0.1 %) 
3.030 

(+5.6 %) 
4.206 

(+0.2 %) 
3.730 3.926 3.013 3.313 4.382 

10 (20) 
1.497  

(-2.2 %) 
3.011 

(+4.9 %) 
4.176 

 (-0.5 %) 
3.736 3.896 3.002 3.365 4.277 

12 (24) 
1.499  

(-2.0 %) 
3.006 

(+4.7 %) 
4.181  

(-0.4 %) 
3.719 3.880 3.009 3.355 4.194 

Refer. 

1.530[3], 

rPBE 

1.602[7], 

PW91 

2.870[3], 

rPBE 

4.198[7], 

PW91 

5.080[3], 

rPBE  

- - - - - 

3.2. Nitrogen vacancies in TiN and their influence on lattice parameter 

We present DFT prediction of the mean effects of nitrogen vacancies on the lattice parameter 𝑎 in fcc TiN1-x. 

To minimize the interactions between vacancies themself for periodic boundary calculations, the TiN supercell 

with 64 atomic sites was chosen.  Within this supercell, vacancies had been created ranging from 3.13 % to 

100.00 % with the step of 3.13 % up to the 12.50 % and from this point, with the step of 6.25 % (corresponding 

to creation of two vacancies from initial 32 N atoms). Resulted dependence of the lattice parameter 𝑎 on N 

vacancies concentration (as 100 × x in TiN1-x) from the least-square best-fit with Birch-Murnaghan EOS is 

presented in Figure 3. We observed linear decrease in 𝑎 with possible linear regression 𝑎 = −0.00009261𝑥 +

4.247 up to the 80 % of vacancy concentration 𝑥 (up to TiN0.2 stoichiometry). The stability of δ-TiN1-x phase 

was experimentally observed up to 63 % of N vacancy concentration [14]. Our calculation shows that the cubic 

phase of TiN1-x could be stable/metastable with even higher concentration of N vacancies, up to ca. 80 %, as 

the slope of the lattice parameter starting to decrease from this point in much steeper way.  

In [15,16], similar calculations were performed on smaller supercell consisting of 8 atomic positions of fcc TiN 

using the Full Potential-Linear Muffin Tin Orbital (FP-LMTO) implementation of DFT with local density 

approximation (LDA). However, there arising direct disadvantages using this type of cell as the number of 

vacancy concentrations is strictly limited (0 %, 25 %, 50 %, 75 % and 100 %), and the self-interactions of 

defects within periodic boundary conditions are less eliminated. Very recently, such simulations were extended 

in [17] using GGA-PBE functional on the supercell with the same size as ours (64 atomic positions). We used 

all these theoretical reference data as well as available experimental results [17–20] and have compared them 

with linear regression of own calculated lattice parameter dependence in Table 3. Our results are for 0.00, 

1.00, 20.00, 49.00 and 50.00 % of N vacancy concentration in very good agreement with experimentally 
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derived lattice parameters, as the maximum relative deviation was 0.61 % for TiN0.80 [19]. Comparing to the 

theoretical prediction [17], their data starting at very similar value (0.00 % deviation at x = 3.13 %) and slightly 

differs at x = 25.00 % with -0.26% error from our results. Overall, with the highest relative deviation of 2.14 % 

for TiN0.25 [16], there is no discrepancy between data in literature and our calculated prediction. 

   

Figure 3 DFT GGA-PBE calculations of TiN1-x lattice parameter changes with increasement presence of 

nitrogen vacancies (100 × x) performed on the supercell with 64 atomic position sites.  

Table 3 Comparison of our GGA-PBE calculations of TiN1-x lattice parameter dependence on N vacancy 

concentration with theoretical and experimental data from available literature  

x in TiN1-x 

(× 100 %) 

𝒂𝐫𝐞𝐟, references 

(Å) 

𝒂𝐨𝐮𝐫, our PBE 
results, linear fit (Å) 

 
𝒂𝐨𝐮𝐫− 𝒂𝐫𝐞𝐟

𝒂𝐫𝐞𝐟
 (%) 

0.00 
4.238exp, [18], 4.225LDA, [15], 
4.180LDA, [16], 4.244PBE, [17] 

4.247 
+0.21, +0.52,  
+1.60, +0.07 

1.00 4.237exp, [19] 4.246 +0.21 

3.13 4.244PBE, [17] 4.244 0.00 

6.26 4.243PBE, [17] 4.241 -0.04 

12.50 4.242PBE, [17] 4.235 -0.16 

20.00 4.203exp, [19] 4.228 +0.61 

25.00 
4.229exp, [18], 4.196LDA, [15], 
4.160LDA, [16], 4.235PBE, [17] 

4.224 
-0.12, +0.66, 
+1.53, -0.26 

36.00 4.228exp, [21] 4.214 -0.34 

49.00 4.217exp, [20] 4.202 -0.36 

50.00 
4.214exp, [18], 4.192LDA, [15], 

4.128LDA, [16] 
4.201 

-0.32, +0.21, 
+1.76 

75.00 4.090LDA, [16] 4.178 +2.14 

4. CONCLUSION 

We have determined surface energies of 8 crystallographic planes in TiN by means of the ab-initio simulation 

method of DFT with GGA-PBE exchange-correlation functional. The most stable is (100) which agrees with 

the fact it has significantly higher atomic surface density than the rest of the studied surface planes. Comparing 

with available published data for (100), (110) and (111) surfaces, our calculations are in very well agreement. 

We also used DFT GGA-PBE method to calculate influence of nitrogen vacancies on the lattice parameter 𝑎 
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in rock salt-like structure of TiN1-x. Linear decrease of 𝑎 with increasement in N vacancy concentration is 

observed and the linear regression of those data is possible up to 80 % of vacancies presence. From this 

point, the slope of the lattice parameter is much steeper and one can predict that the metastability of cubic 

TiN1-x phase will be close to TiN0.20 composition. To conclude, we have reached excellent correspondence with 

theoretical and experimental published literature data and extended calculated lattice parameter dependence 

of δ-TiN1-x on the full range of nitrogen vacancies with very good linear fit regression.    
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