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Abstract 

Precleaning of float glass is an important step in manufacturing processes based on combining its surface with 

other materials. Cleanness, together with surface roughness and chemical activity affect adhesion properties 

of the substrate that are crucial for the quality of the final product. Atmospheric pressure plasma pretreatment 

was studied as a dry alternative to conventional wet cleaning methods of glass, with the aim at industrial 

requirements. Diffuse coplanar surface barrier discharge (DCSBD) and multi-hollow surface dielectric barrier 

discharge in air at atmospheric pressure were used on soda-lime glass to prove the applicability of thermally 

non-equilibrium plasma. Surface analyses by water contact angle measurement, X-ray photoelectron 

spectroscopy, atomic force microscopy and Fourier-transform infrared spectroscopy were complemented by 

industrial ball drop and bending tests realized on laminated safety glass. A highly effective and non-invasive 

surface treatment suitable for large-area processing was achieved with the plasma of DCSBD. Targeting the 

industrial applications, the DCSBD system was adjusted to the devices to enable contactless and in-line 

electrode implementation to the manufacturing processes. Thanks to the cooperation with a glass 

manufacturing company, these DCSBD operating devices proved advancement also under industrial 

conditions. 

Keywords: Atmospheric plasma treatment, glass cleaning, laminated safety glass, DCSBD, 

Multi-hollow SDBD, adhesion improvement 

1. INTRODUCTION 

The main objective of laminated glass is ensuring front-impact crash resistance, which is a valuable property 

for automotive industry [1], civil engineering or arms industry [2]. The toughness of laminated products is 

dependent on the adhesion of contact surfaces. This study targets the adhesion improvement of glass surface 

without side-effects to its internal structure by precleaning and chemical activation [1], [3], [4]. In manufacturing, 

the float glass typically passes through a washing machine with brushes and conditioned water. Plasma can 

be considered an attractive tool for dry surface pretreatment of glass before coating with added layers [4], its 

bonding [1], [2] or laminating [5]. Reduction of power consumption and waste production demand alternatives 

such as plasma treatment. The use of thermally non-equilibrium plasma generated in air at atmospheric 

pressure reduces costs for surface treatment of materials like the widely used soda-lime glass (SLG) [6]. In 

this study, the effect of pretreatment by plasma generated using two different surface dielectric barrier 

discharges (DBD) was studied with the aim of contactless and in-line electrode implementation under industrial 

conditions. In previous studies of nonthermal plasma treatment on SLG including e.g. magnetron sputtering 

[4], or utilization of glide arc [5], plasma jet [1], volume DBD [7] and surface DBD [2], [3], [5], [8] only small 
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areas of glass were investigated, whereas in our experiments and industrial trials we were able to treat large-

area glass. 

2. EXPERIMENT 

In this study, plasma treatments were accomplished with two different surface dielectric barrier discharge 
systems operating in ambient air at atmospheric pressure: diffuse coplanar surface barrier discharge (DCSBD) 
and multi-hollow surface dielectric barrier discharge (MSDBD). The DCSBD plasma unit made by 

ROPLASS, s. r. o. (400 W, AC, 15 kHz, amplitude  10 kV) generates 0.3 mm thin plasma layer with areal 

dimensions 80 x 210 mm [6]. The MSDBD unit made by Kyocera (25-30 W, AC, 27 kHz, amplitude  10 kV) 

generates an active plasma area of 18 x 19 mm. The MSDBD plasma was employed during the plasma 
treatment procedures from various distances with or without flowing air served as the working gas. The listed 
values of supplying power for each discharge system resulted in generation of plasma with the same value of 
power density of 2.5 W/cm2. 

SLG samples from Polartherm-Flachglas GmbH used for laboratory plasma treatment had a thickness of 2.1 
or 2.8 mm and areal dimensions in the order of centimetres in dependence on the applied surface analytical 

method for studying the induced surface changes. Industrial conditions were simulated by leaving the samples 

uncleaned before water contact angle (WCA) measurement and X-ray photoelectron spectroscopy (XPS) 

analysis. All atomic force microscopy (AFM) roughness measurements, except for one comparative, were 

realised on samples precleaned in an ultrasonic cleaner (USC) with three liquids: acetone, isopropyl alcohol 

and double deionised water. Fourier-transform infrared (FTIR) spectroscopy targeted on the evaluation of 

cleaning effect of plasma treatment was carried out on SLG precleaned in acetone using USC, subsequently 

intentionally contaminated by 100 nm layer of stearic acid (SA) deposited in an evaporation chamber. 

Laminated safety glass examined by mechanical tests were composed of two float SLG of 4 mm thickness 

and a polyvinyl butyral (PVB) adhesive film with a thickness of 0.38 mm. Safety glass areal dimensions were 

in the order of meters, thus exceeding the range of active discharge units. This fact creates a demand for the 

non-contact leading of DCSBD plasma units implemented by pneumatic bearings or specially designed holder. 

Large samples for laminated safety glass examined by mechanical tests in Polartherm-Flachglas were 

precleaned by an in-line washing machine with conditioned water. Further processing of laminated glass 

included pressing, heating, and maturing in an autoclave. Presence of tin as a manufacturing residual was 

continuously controlled by various tin side detectors to ensure experimental consistency. The major part of 

experiments was accomplished on SLG sides without tin content; however, the surface that is bonded by the 

adhesive film in the lamination process usually contains tin, and it was also examined. 

The static WCA measurements analysed with See System by Advex Instruments, s. r. o. were performed with 

1 μl drops of double deionised water. The XPS analysis was realised with an analytic platform ESCALAB 250 

Xi by Thermo Fisher Scientific using Al Kα source and Rowland circle monochromator. Spectra calibration, 

processing and fitting routines were completed in Avantage software. An AFM topology analysis with Ntegra 

Prima by NT-MDT was accomplished on a 5 x 5 μm area in semi-contact mode. The FTIR spectra analysed 

with Horizon MB software were obtained with MB 3000 by ABB GmbH using 4 mm aperture. The ball drop 

testing of laminated glass on Kugelfall 5S by Torgauer Maschinenbau GmbH employed a 1 kg iron ball free 

fall from the height of 4 meters. The bending test evaluated with Glasprüfstand.vi software was accomplished 

with ZPM-U by ift Rosenheim GmbH using G indenter. Both mechanical tests followed the relevant 

DIN/EN/ISO standards. 

3. RESULTS AND DISCUSSION 

The WCA measurement revealed a significant wettability improvement of SLG surface after short-term 

exposure to the utilized plasmas. Figure 1 shows the WCA results achieved in experiments on uncleaned 
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glass with 1 and 3 s exposures from distances of 0, 0.3, 1 and 3 mm. The average reference value (26 ± 1)° 

from two sets of samples with comparable contamination was obtained on the sides without tin. Reference 

WCA measurement on the tin-side resulted in values equal within the range of uncertainty. DCSBD plasma 

treatment proved the most effective treatment-a 1 s exposure led to WCA reduction to (9.5 ± 0.3)°, which is 

less than reported in [7] and more than in [3] and [8]. However, 3 s MSDBD exposure in contact mode (distance 

0 mm) resulted in the lowest WCA value (6.3 ± 1.3)°, which is similar in the range of uncertainty to the result 

achieved with DCSBD for the same exposure time and also to the value referred to in [8]. Employing non-

contact mode of MSDBD leading at the 0.3 mm distance commonly used for DCSBD [6] resulted in WCA 

values higher than 10° without gas flow and 15° using air as working gas. MSDBD applied at the distance of 

1 mm from samples gives comparable results for both flow modes, while at 3 mm the use of air induced more 

significant hydrophilicity improvement. DCSBD plasma treatment showed better uniformity, which is evident 

from the accuracy of WCA measurement. Implementation of flowing air resulted in higher uncertainties 

independently on the distance, causing lower homogeneity of treatment effect. 

 

Figure 2 WCA values measured on uncleaned SLG after 1 and 3 s plasma treatments 

The XPS analysis of glass samples exposed to plasma for 3 s focused on the presence of silicon, carbon and 

oxygen on the surface. Resulting areas of peaks Si2p, C1s and O1s in relative units are shown in comparison 

to the respective values of WCA in Figure 2. Binding energies in the measured spectra were 102.9, 284.8 and 

532.4 eV for silicon, carbon and oxygen peaks, respectively. The presence of silicon in the analysable depth 

profile (< 10 nm), and its increase can be interpreted as a sign of decontamination of the SLG surface. This 

cleaning effect was demonstrated for plasma treatments from a distance of 0.3 mm and less. Carbon content 

follows two mechanisms: decrease by organic contamination removal and increase by the bonding of carbonyl 

and carboxyl functional groups. Generally, except for the treatment from 1 mm distance, a more significant 

relative decline of carbon content was achieved by MSDBD plasma independently of the employed working 

gas flow. Oxygen originates in the glass material, in contaminants from water vapour in the air, and also from 

chemically active functional groups. All investigated plasma treatments induced an increase in oxygen content, 

which was most significant for exposures from a distance 0.3 mm and less. Similar silicon, carbon, and oxygen 

proportional alterations were acquired with plasma jet [1], and DCSBD [3], where high-resolution spectra 

targeted on binding energies revealed a decrease of C─C or C─H bonds along with an increase of C─O and 
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O─C═O bond concentrations. Carbon and oxygen rearrangement caused by chemical activation is reflected 

in the O/C ratio approaching 1 on an untreated sample. The maximum increase of O/C to 9.1 was achieved 

by MSDBD in contact mode. DCSBD plasma treatment showed an O/C increase to 4.8, which was lower than 

values acquired with MSDBD plasmas applied from the same 0.3 mm distance independently of the flow mode. 

 

Figure 2 XPS analysis of elemental composition compared with WCA () decrease on uncleaned SLG  

after 3 s plasma treatments 

The AFM analysis of surface topology focused on the structural changes after the use of standard wet cleaning 

methods and investigated plasma techniques. Table 1 lists the root mean square roughness (Sq) and 

arithmetical mean roughness (Sa). Smoothing of the surface while cleaning with three liquids in a USC was 

proven by threefold Sq decrease, which is in agreement with [4]. Further experiments with 3 s plasma 

exposures on 3-liquid precleaned SLG revealed significant roughness change induced exclusively by the use 

of MSDBD in contact mode reflected by Sq doubling. DCSBD and MSDBD in non-contact mode applied for 

3 s showed a harmless effect on the SLG surface confirmed by an unaltered roughness, which was also 

achieved in previous studies of DCSBD treatment [5], [8], or of volume DBD in helium [7]. 

Table 1 AFM measurement of Sq and Sa on a 5 μm x 5 μm area of SLG surface 

Sample  Sq (nm) u(Sq) (nm) Sa (nm) u(Sa) (nm) 

Uncleaned 4.4 ± 1.6 2.3 ± 0.4 

3-liquid cleaned, 3 x 180 s 1.4 ± 0.4 0.5 ± 0.1 

DCSBD, 0.3 mm, 3 s 1.5 ± 0.2 1.1 ± 0.2 

MSDBD, 0 l/min, 0 mm, 3 s 2.8 ± 1.6 1.4 ± 0.6 

MSDBD, 0 l/min, 0.3 mm, 3 s 1.3 ± 0.6 0.7 ± 0.3 

MSDBD, 5 l/min, 0.3 mm, 3 s 1.2 ± 0.3 0.7 ± 0.2 

Based on the results presented up to this point, the DCSBD unit was implemented in Airpillow DCSBD-a device 

for non-contact leading of DCSBD unit at a perfectly accurate distance of 0.3 mm for large-area treatment. The 

FTIR spectroscopy measurement on intentionally contaminated SLG samples by SA layer resulted in spectra 

of absorbed radiation shown in Figure 3. Absorbances at the detected peaks of CH2 band at wavenumbers 
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2850 and 2917 cm-1 were gradually decreasing with the extending exposure time by repeated Airpillow DCSBD 

plasma treatments. This fact indicates surface decontamination, which was almost complete after a total sum 

exposure of 5 s. 

 

Figure 3 FTIR spectra interpreting SA decomposition from SLG surface 

The automatic ball drop test demonstrated a remarkable improvement of laminated safety glass crash 

resistance, illustrated in Figure 4. The composite of Airpillow DCSBD plasma-treated glass plates with the 

embedded DCSBD plasma-treated PVB adhesive film succeeded without fractures. 

As shown in Table 2, the bending test performed on safety laminated glass confirmed toughness enhancement 

reached by employing the DCSBD plasma pretreatment. Evaluation of breaking force proved 46 % progress 

for samples composed of glass treated by Airpillow DCSBD plasma, and 52 % with DCSBD plasma treated 

PVB adhesive film. A comparable improvement of adhesive strength of a joint composed of DCSBD plasma-

treated glass was demonstrated in lap-shear testing on small samples [2]. 

 

Figure 4 Photos illustrating the ball drop test results of safety laminated glass made without/with the 

implementation of DCSBD plasma 

Table 2 Breaking force evaluated by a bending test of laminated safety glass made without/with the   

 implementation of DCSBD plasma 

Glass  PVB film FMAX (N) u(FMAX) (nm) 

No treatment No treatment 651.1 ± 128.5 

DCSBD 3 s, 400 W, 15 kHz, 0.3 mm No treatment 949.4 ± 104.0 

DCSBD 3 s, 400 W, 15 kHz, 0.3 mm DCSBD 3 s, 400 W, 15 kHz, 0.3 mm 989.0 ± 89.3 
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4. CONCLUSION 

Surface treatment of SLG by the studied surface DBD plasmas showed a significant wettability improvement 

attributed to chemical activation by incorporation of oxygen-containing functional groups. Cleaning of organic 

contamination on the microscopic scale with respect to preservation of SLG structure was demonstrated. The 
DCSBD plasma unit proved suitable for non-contact leading implementation, which resulted in Airpillow 

DCSBD development. The mechanical tests of the DCSBD plasma-treated SLG manifested a significant 

improvement of safety glass strength and suitability of the DCSBD system for fast large-area in-line production 

in factory conditions. 
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