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Abstract  

We have developed an inexpensive and efficient technology of hydrothermal growth of ZnO nanorods from 

zinc nitrate hexahydrate (Zn(NO3)2·6H2O), as a precursor and hexamethylenetetramine (HMTA) (C6H12N4), as 

a surfactant followed by  plasma hydrogenation in a novel inductively coupled plasma (ICP) quartz reactor and 

equipped with the rotary sample holder to stir powder during plasma treatment. We have optimized the 

photoluminescence spectroscopy for measuring optical scattering samples with the high sensitivity, precise 

sample positioning and very low influence of the scattered excitation light. Here we present the latest results 

on the enhancement of the UV photoluminescence of the ZnO nanorods after plasma hydrogenation. The 

exciton-related photoluminescence has been significantly enhanced whereas the deep defect related yellow 

photoluminescence has been significantly decreased.  
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1. INTRODUCTION 

Zinc oxide is one of the most popular II-VI semiconductors, because of its low-cost, non-toxicity, wide band 

gap of 3.36 eV and big exciton energy of 60 meV. Additionally, ZnO is a material with a great diversity of 

morphologies. Due to a high surface-to-volume ratio and related size effects, ZnO nanorods (NRs) are a 

perspective for energy conversion or sensing applications such as solar cells, light emitting diodes [1], high 

performance electrochemical capacitors [2], biosensors [3], gas sensors [4] or highly efficient scintillators [5]. 

The surface composition of the ZnO NRs drastically changes upon the exposure to hydrogen and oxygen 

plasma treatments affecting the defects creation processes [6]. The first-principles studies of the native point 

defects in ZnO have been reported previously [7]. However, the role of native defects in ZnO nanorods is still 

not fully understood [8]. The synthesis of ZnO NRs has been performed through complex methodologies, most 

of them starting with a seed layer followed by NRs growth. Nanopowders tend to form agglomerates due to 

different reasons that include electrostatic and Van der Waals forces or because they are interlaced by different 

geometry of the nanoparticles. Sonication is a powerful tool for the treatment of dispersing nanoparticles; it is 

easy to use, inexpensive and efficient. We have developed the technology of hydrothermal growth of ZnO NRs 

powder from zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA) (C6H12N4) and 

shown that the surface composition drastically changes upon the exposure to plasma treatments [9-11]. 

2. EXPERIMENTAL 

2.1. Growth of ZnO nanorods 

Zinc nitrate hexahydrate p.a. (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA) (C6H12N4) p.a. was 

purchased from Slavus. Deionized water was purified with a So-Safe Water Technologies, having a 

conductivity 0.20 µS·cm-1 (25 °C). The chemicals were used in ambient conditions and without further 
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purification. The reaction conditions were 

25 mM aqueous solutions Zn(NO3)2·6H2O and 

HMTA at 90 °C for 3 h. The precursor salt 

residue was removed from the sample by 

washing 3-times with deionized water followed 

by centrifugation at 18,000 rpm (RCF: 23542g) 

for 20 min. Finally, the ZnO NRs were dried by 

lyophilization, see Figure 1.  

2.2. Inductive plasma reactor 

The plasma oxidation and hydrogenation of 

ZnO NRs was done in a novel inductively 

coupled plasma (ICP) quartz reactor developed 

in the cooperation with SVCS Process 

Innovation, s.r.o. The reactor operates at 13.56 

MHz, 10-200 W discharge power, pressure 1-

100 Pa and gas flow 1-100 sccm: hydrogen 

(purity 99.999 %), oxygen (purity 99.995 %), 

argon (purity 99.998 %) and nitrogen (purity 

99.999 %). Prior the plasma treatment, the 

chamber was evacuated below 1 Pa and 

flushed by process gas to reduce residual gas 

contamination. To achieve good homogeneity, 

the powder was stirred during the plasma 

treatment using motorized cradle-like rotary 

quartz holder controlled by Arduino 

microcontroller, see Figure 2. Prior the material characterization, the ZnO powder was sintered at room 

temperature to compact 0.5 mm thick pellets with diameter 3 mm.  

 

Figure 2 Rotary holder for ICP reactor swinging ±60 degrees to achieve good homogeneity of plasma 

treatment  

Figure 1 SEM image of ZnO NRs by MAIA3, TESCAN 

with the In-beam SE detector placed in objective lens. 

The electron beam had an energy 5 keV.  
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2.3. Photoluminescence spectroscopy 

The schema of photoluminescence spectrometer is shown in Figure 3. The photo-excitation is provided by the 

fiber-coupled pulsed UV LED (Thorlabs #M340F3) optically filtered by narrow band pass optical filter featuring 

90% transmission at 340 nm and blocking wavelengths in the spectral range 250-310 nm and 370-450 nm by 

more than 10 orders and in 450 - 750 nm by 6 orders (EdmundOptics fluorescence filter #84-092). The sample 

holder is positioned by two perpendicularly oriented translation stages manually driven by adjuster screws for 

precision motion. The emitted and scattered light is collected and focused onto the monochromator input slit 

by two 90° off-axis mirrors coated by UV enhanced aluminum. The scattered UV light is filtered at the 

monochromator input slit by the fluorescence long pass filter EdmundOptics #34-302 (UV grade fused silica 

substrate, the cut-on wavelength 375 nm). The f/4 double gratings monochromator SPEX 1672 operating in 

the spectral range 300 - 900 nm is equipped with 1200 grooves/mm gratings blazed at 500 nm with less than 

10-9 scattered light. The spectral resolution is 2 nm with 1 mm slits. The monochromatic light intensity is 

detected at the monochromator output slit by the Peltier cooled multi-dynode multi-alkali red sensitive 

photomultiplier (Photonis XP2203B, the spectral range 300 - 700 nm) biased to a high voltage by the Stanford 

Research Systems PS325/2500V-25W high voltage power supply. The photomultiplier current output is 

connected via coaxial cable to Stanford Research Systems SR570 low-noise current preamplifier followed by 

the Signal Recovery 5105 lock-in amplifier referenced to LED frequency. 

 

Figure 3 The schema of photoluminescence spectrometer with pulsed UV LED as a light source, band pass 

(BP) and long pass (LP) filters, focusing off-axis mirrors, double grating monochromator SPEX 1672 

controlled by a stepper motor and a photomultiplier (PMT) 

3. RESULTS AND DISCUSSION 

Figure 4 compares PL spectra of as grown ZnO NRs powder with PL spectra of ZnO NRs after plasma 

oxidation or hydrogenation. The excitation UV LED was operating at the wavelength 340 nm in pulse mode 

with the repetition rate 600 Hz and 50% duty cycle. The PL emission spectra were measured in the spectral 

range 370 - 670 nm. The photomultiplier was biased by the cathode voltage -1600 V. The anode dark dc 

current as measured by pico-ammeter decreased from 2.8 nA at 20 °C to 0.2 nA at -15 °C while the dc noise 

was reduced from 300 pA to 50 pA. Since the ac current preamplifier gain was fixed to 10 µA/V and the input 
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voltage range of lock-in amplifier is 1µV - 1V, the maximum measurable ac photocurrent was 10 µA and the 

minimum measurable ac photocurrent as well as the ac noise level was 10 pA providing the dynamic range of 

6 orders of magnitude. We have chosen the arbitrary units of PL intensity in such a way that 1 a.u. corresponds 

to 10 pA photocurrent.   

The as grown ZnO NRs pellets show measurable PL, but excitation peaks in near UV at 380 nm have lower 

intensity then the defect-related yellow PL (broad band 550 - 600 nm). The oxygen plasma treatment has no 

effect on the observed PL emission spectra. However, the PL emission in near UV region has been significantly 

enhanced after ICP plasma hydrogenation whereas the deep defect related yellow PL (broad band 550 - 

600 nm) has been significantly decreased. We explain the observed phenomena by passivation of defects at 

grain boundaries that significantly prolongs the lifetime of excitons.  

 

Figure 4 The photoluminescence emission spectra of two pellets prepared independently from ZnO NRs 

before (as-grown) and after exposition to oxygen or hydrogen plasma in ICP reactor. The excitation 

wavelength was 340 nm. 

4. CONCLUSIONS  

We have developed an inexpensive and efficient the technology of hydrothermal growth of ZnO NRs powder 

from zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA) (C6H12N4). The plasma 

oxidation and hydrogenation were done in a novel inductively coupled plasma (ICP) quartz reactor equipped 

with the rotary sample holder to stir powder during plasma treatment. We have shown that the 

photoluminescence drastically changes upon the exposure to hydrogen plasma treatments.  
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