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Abstract  

Structure, optical and photocatalytic properties for wide band gap oxide doped zinc oxide are investigated by 

XRD, ESR and UV-visible spectroscopy. It was shown the introduction of Al2O3 or ZrO2 led to form of structural 

defects in zinc oxide matrix. According ESR data a small amount of ZrO2 (0.01 mol.%) in ZnO forms a defects 

of donor nature, while the same amount of Al2O3 in ZnO matrix led forming as acceptor and as donor defects. 

Observed tail and shift of optical band gap confirmed ESR data. It was shown the increasing of donor defects 

in structure ZnO led to increase of photocatalytic activity to phenol degradation. It was shown the dopant types 

also determined a kind of intermediates of phenol degradation and possible mechanism. For Ag-decorated 

doped ZnO it is also shown that mechanism of phenol degradation contain a redox cycle. It was shown the 

bactericide activity of Ag-decorated ZrO2-doped ZnO to S.aureus is better than E.coli. 
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1. INTRODUCTION 

The enhancement of photocatalytic properties for pure oxide is based on decreasing the band gap by the 

introduction of cationic or/and anionic dopants in the main oxide [1-2]. Usually, this approach is used to 

enhance the photosensitivity of materials to the visible light [3]. Also, this approach may be used for ions with 

a variable valence that creates additional centres with oxidative states in catalytic systems [3-4]. There is a 

wide spectrum of cationic dopants (Ag, Al, Mg, Bi, Cd, Fe, Sn, etc.) uses for the building of catalytic structures 

based on oxides [5]. However, the comparative analysis of photocatalytic activity for oxides enhanced by 

different dopants is very difficult because there are many parameters that influence the catalytic activity.  

Also, investigators use different kinds of organic pollutants for the estimation of the efficiency of such complex 

catalysts [6]. A single cationic or anionic dopant [7] may be used, or the cationic and anionic dopants may be 

combined in zinc oxide [8]. Most investigators use the titanium oxide (TiO2) system, which is more expensive 

than the zinc oxide (ZnO) system. Thus, ZnO has a similar or higher catalytic activity and also antibacterial 

properties [9]. However, ZnO has less stability in water, a high sensitivity to photocorrosion and fast electron-

hole recombination [10]. However, ZnO may be modified by wide band gap semiconductors, such as ZrO2, 

Al2O3 or MgO, which show a high stability to degradation under irradiation. Some studies have noted that Zr-

doped ZnO may change the recombination of electron-hole pairs because the Zr atoms provide a deep energy 

level in the band gap of ZnO [11].  

This may give a high hole activity in the modified materials. For Al-doped ZnO, some authors noted that the 

types of defects in the structure depend on whether the Al atoms substitute for Zn atoms or occupy interstitial 
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sites [12]. These systems for photovoltaic harvest devices are very well studied. However, the creation of a 

heterojunction between different oxides of a complex structure may change the structure and surface state of 

each component. The wide band gap oxides also may enrich the cations of other composite components. As 

a result, different types of defects in the cationic and anionic sublattice may be created. This may influence the 

photosensitivity of the wide band gap oxide co-doped ZnO in the near-UV region and the catalytic properties 

[5,11,13]. Thus, an analysis of recent reviews shows the tendency to use complex composite systems and the 

less expensive ZnO. Also, there are efforts to solve the problem of ZnO photostability and enhance its catalytic 

activity [14]. In this work, the influence of Al2O3 or ZrO2 doping on the structure defects, optical and 

photocatalytic properties will be discussed. In addition, the bactericide activity of Ag-decorated doped ZnO will 

be addressed.  

2. EXPERIMENTAL  

Wide gap oxide doped zinc oxide nanoparticles (NPs) were synthesized using a precipitation technique from 

determined salts in oxalate solution, see Figure 1. All used chemicals were of chemical purity. The sediments 

were washed several times with distilled water before drying in a microwave furnace (P = 700 W, f = 2.45 GHz). 

The dried precipitates were calcined in a resistive furnace at 500 °C with a dwell time of 2 h. The amount of 

doped oxide (ZrO2 or Al2O3) is 0.1 mol. %. The optical properties of ZnO nanopowders were measured on a 

Cary 5000 UV-Vis-NIR spectrometer with Internal Diffuse Reflectance sphere (Agilent Technologies, USA). 

Kinetic of 50 ppm phenol solution degradation was estimated by UV spectroscopy and liquid chromatography 

HPLC. Electron spin resonance (ESR) spectra of systems were obtained on CSM 8400 spectrometers 

(9.45 GHz). Phase composition was investigated by XRD at CuK irradiation. 

3. RESULTS AND DISCUSSION 

The synthesis of the ZnO and (Al2O3 or ZrO2) co-doped ZnO oxide samples involved the sequential forming of 

the oxide nanoparticles during an isothermal heat-treatment at intervals of 500 °C. Temperature is a factor for 

the control of the oxide nanoparticle size, deficiency and surface state [15]. The change of these parameters 

may be also influence the optical and catalytic properties of the oxides [16,17]. 

3.1. Wide gap oxide doped ZnO: structure, optical and photocatalytic properties 

XRD data was used for estimation of the type and parameters of lattice of pure and doped ZnO. It was shown 

that all investigated systems crystallized in the wurtzite structure, P63mc. The XRD data shows that the 

coherent scattering area (CSA) for pure ZnO is 32 nm and the introduction of additional dopant elements does 

not affect its size in doped zinc oxide.  

Table 1 Estimated parameters of cell pure and doped ZnO  

Systems Phase 
Cell parameters of ZnO 

a, A c, A c/a 

ZnO ZnO, wurtzite 3.2795 5.2025 1.5864 

ZnO-0.1 mol. % ZrO2 ZnO, wurtzite 3.2603 5.2043 1.5963 

ZnO-0.1 mol.% Al2O3 ZnO, wurtzite 3.2418 5.2005 1.6042 

Ag-ZnO-0.1 mol. % ZrO2 Ag, ZnO, wurtzite 3.2608 5.2043 1.5960 

Ag-ZnO-0.1 mol.% Al2O3 ZnO, wurtzite 3.2482 5.2074 1.6032 

At the same time, the parameter a of the ZnO cell decreases with the introduction of dopants, but the parameter 

c of the ZnO cell shows a slight increase for doped systems in comparison with pure zinc oxide parameters.  
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This may be due to a decrease in the ionic radii of substituting ions in the ZnO host. The ionic radii of the 

dopants are r(Zr4+) = 0.072 nm, r(Zr3+) = 0.084 nm and r(Al3+) = 0.052 nm, while the ionic radius of zinc is 

0.076 nm. The change of ratio of c/a for doped systems also correlates with ionic radius of doped element. 

Figure 1 shows ESR spectra of doped ZnO systems. For ZrO2-doped ZnO the signal with g-factors is equal 

to 1.9600 is observed in ESR spectrum, as shown in Figure 1a.  

 
                                         a)                                                                                b) 

Figure 1 ESR spectra: a) for Al2O3 and ZrO2 doped ZnO, b) Ag-decorated Al2O3 and ZrO2 doped ZnO 

This signal may be superposition of signals from [Zn2+-Vo+] centers and some amount of [Zr3+-Vo2+] centers in 

the ZnO structure [18]. The amount of these centers is 21014 spin/mg. Note that for pure ZnO this signal in the 

ESR spectrum isn’t observed. ESR spectrum ofr 0.1 mol. % Al2O3-doped ZnO shows an isotropic signal with 

g-factor is equal to 1.9574 ([Zn2+-Vo+] defects), see Figure 1a. The estimated amount of these centers is 

4.21014 spin/mg. The signal with g = 2.0024 in the ESR spectrum is observed for this system also. This signal 

may enable the [VZn-] or [VZn- - Zni], [VZn- - Ali] centers [19]. Note that the increasing amount of [Zn2+-Vo+] centers 

is observed at the transfer from a system with ZrO2 dopant to system with Al2O3 dopant. The defects associated 

with oxygen vacancies (Vo) should give donor levels in band gap of ZnO, while the defects associated with the 

second type of defects should give acceptor levels in it.   

UV-Vis absorbance spectra for the pure ZnO and Al2O3-doped ZnO, ZrO2-doped ZnO are shown in Figure 2a. 

Analysis of UV-Vis absorbance spectra data in coordinate (hvAbs)2-hv allows estimating of energy of optical 

band gap of investigated systems. The edge of the adsorption band for pure ZnO is 385 nm (Eb = 3.19 eV), it 
is 385 nm (Eb = 3.19 eV) for ZrO2-doped ZnO and it is 390 nm (Eb=3.13 eV) for Al2O3-doped ZnO. It is seen 

the optical band gap of Al2O3-doped ZnO shows the red shift that marks on the presence of acceptor levels in 

forbidden band of this material. The appearance of tail in the optical spectrum (see inset in Figure 2a) indicates 

on presence of donor levels in band gap of ZnO for all investigated systems. The intensity of tail for Al2O3-

doped ZnO is highly compared to other systems. The estimated energy of defect donor levels is near 2.4 eV. 

It is noted the oxygen vacancies give donor levels in forbidden band of ZnO. These results are confirmed by 

the ESR data that indicates on the kinds of defects in materials.  

Figure 3a shows the photocatalytic activity of pure ZnO, Al2O3-doped ZnO and ZrO2-doped ZnO to phenol 

degradation that estimated based on HPLC data. It is noted that the photocatalytic activity of pure ZnO is close 

to TiO2 (P25 Evonik). The estimated rate coefficients (keff, min-1) on first times degradation (25 min) are 
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5.1910-2 (R2=0.98) for ZnO, 2.910-2 (R2=0.99), for ZrO2-doped ZnO and 8.3210-2 (R2=0.99) for Al2O3-

doped ZnO. 

 
a)          b) 

Figure 2 UV-Vis absorbance spectra for а) the pure ZnO and Al2O3-doped ZnO, ZrO2-doped ZnO 

 
b)          b) 

Figure 3 Photocatalytic activity of pure ZnO, Al2O3-doped ZnO and ZrO2-doped ZnO to phenol degradation: 

a) HPLC data, b) UV-visible spectroscopy and the photocatalytic activity of Ag-decorated ZrO2-doped ZnO. 

It was seen the doping of Al2O3 in ZnO enhanced the photocatalytic degradation of phenol in comparison with 

pure ZnO. It may be connected with the increasing of amount of oxygen vacancies in this material. Phenol 

degradation in presence of oxides is very well studied [20]. The first mechanism occurs due to hydroquinone 

formation. Second possible mechanism occurs due to benzoquinone formation with some amounts of 

hydroquinone, catechol or rezorcin. These compounds have a different wavelength of light adsorption in UV-

visible diapason. The analysis of UV-visible spectra of phenol photodegradation by pure and doped ZnO in the 

time interval of 20-30 min shows the presence of peaks at 270 nm (phenol), 276 nm (1,2-quinone), 254, 289 
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and 360 nm (1,4-quinone), 244 and 293 nm (hydroquinone). It is noted that the bands corresponding of 1.2-

quinone and hydroquinone are more intense in spectra of ZrO2-doped ZnO and pure ZnO (Figure 3b). It was 

shown the process of phenol photodegradation is close to second mechanism.  

3.2. Ag decorated wide gap oxide doped ZnO: structure, optical and photocatalytic properties 

According XRD data the AgNPs is forming only in Ag-decorated ZrO2-doped ZnO. It is noted that Ag doping 

changes cell parameters only for Al2O3-doped ZnO did not change cell parameters (see Table 1). The cell 

parameters of this system are increased. It may be indicate the incorporation in the host lattice of a some 

amount of silver as Ag+ ions with a large ionic radius (r(Ag+) = 0.115 nm). The ESR spectrum of Ag-decorated 

ZrO2-doped ZnO shows the appearance of wide signal with g = 2.03 which indicates on the formation of surface 

AgNPs [21]. However, for Ag-decorated Al2O3-doped ZnO, ESR signal from surface AgNPs is very weak. It is 

known that the AgNPs reduce on surface in the presence of Al2O3 because the Ag-O-Al strong surface bonds 

are created in such a host matrix [22]. 

UV-Vis absorbance spectra for the pure ZnO, Ag-decorated Al2O3-doped ZnO and Ag-decorated ZrO2-doped 

ZnO are shown in Figure 2b. Analysis of UV-Vis absorbance spectra of Ag-decorated systems did not show 

the changing of the values of optical band gap energies. However, the intensity of tail for Ag-decorated system 

is higher than for initial undecorated system independently on dopant type and as result the photosensitivity 

of these materials to visible region irradiation is enhanced. Figure 4 shows the UV-visible spectra of phenol 

photodegradation for Ag-decorated systems in which the AgNPs is observed.  

 
Figure 4 Photocatalytic activity of Ag-decorated ZrO2-doped ZnO to phenol degradation 

As can be seen ZnO based systems and Ag-decorated ZnO based systems show different pattern of phenol 

degradation. For pure and co-doped ZnO possible mechanism degradation occurs due to benzophenone 

formation with a small trace hydroquinone, cathechol products up to 20 min after start phenol 

photodegradation. Then the benzophenone destroys due to hydroquinone with simultaneous degradation of 

last. For Ag-decorated co-doped ZnO systems possible mechanism occur due to hydroquinone formation. The 

peaks in pattern of phenol degradation at 244 and 293 nm mark the presence of this compound at reaction 

times up to 20 min. Then the destroying of hydroquinone is observed, see Figure 4. It was shown that for Ag-

decorated 0.1 mol.% ZrO2-ZnO the phenol photodegradation occurs due to redox cycle. It is noted the cyclic 

inversion of 1,4-hydroquinone/1,4-quinone is observed. Two pair Ag+/Ag0 and 1,4-hydroquinone/1,4-quinone 
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take part in redox cycle. This slows down the phenol photodegradation. It is also noted that possible 

mechanism.  

The tests for the bactericide activity of Ag-decorated ZrO2-codoped ZnO show activity to growth inhibition of 

S. aureus (100 %) and E. coli (60 %). It was shown that the growth inhibition of S.aureus was approximately 

two times higher than the growth inhibition of E.coli. 

4.  CONCLUSIONS 

It was shown, the kind of dopant influences on defects in ZnO structure. Thus, ZrO2 doping led to form only 

donor defects in structure, while the Al2O3 doping of ZnO forms as acceptor and donor types of defects in ZnO. 

The defects of structure of doped ZnO are determined the optical properties and photoactivity of ZnO. The 

formation of surface Agm clusters or Ag NPs in doped ZnO depends on the dopant type. It was shown the pure, 

wide oxide doped ZnO and Ag-decorated doped ZnO have different ways of phenol photodegradation. It was 

shown that Ag-decorated ZnO has good bactericide properties.  
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