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Abstract  

Laser surface processing is an established method to introduce surface functionalities on solid surfaces with 
the required throughputs for a commercial process. Fabrication of laser induced surface structures in an 
effective matter is done by laser interaction studies, which reveal the best processing parameters (laser 
wavelength, fluence, repetition, together with the processing speed and environment). Customized solutions 
are providing the best yields and they are being implemented faster than ever. However, the optics 
manufacturers are not being to keep up the pace with the new requirements, so they turn instead on older, but 
safer technology. In order to get a better understanding of optics capabilities, thorough testing is required. 
Common laser metallic mirrors, commercially available, are being rigorously tested using a nanosecond 
Yb:YAG laser and the results are compared with the vendor’s information. 
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1. INTRODUCTION 

Development of laser-induced nano-structures for commercial use on metallic and dielectric surfaces faced a 
rapid growth in the last years [1-7], mainly due to development of powerful lasers, diffractive optics and high-
speed laser scanners. To decrease the cost of mass manufacturing, users are expecting “universal” laser 
systems that are able to treat a wide range of materials, from polymers to metals and dielectrics. This is not 
an easy task for the companies producing the laser systems, since they require different parameters 
(wavelength, pulse duration and repetition rate) for the multitude of surfaces that are to be treated. One solution 
is to create a base laser system where one can add modules, which would alter/tune the laser parameters [8] 
closer to the requirements of treated materials. This solution is to use powerful nanosecond laser systems, 
which can be later altered using higher-harmonics generation and pulse compression. The powerful 
nanosecond laser system would require high-quality optics, which would be able to withstand the energy 
densities with low maintenance. The other solution will be to use a more rigid laser architecture, where only 
one pulsed duration and wavelength could be used, using high-cost dedicated dielectric coatings for its optics 
The metrology of these components, the so called laser-induced damage threshold (LIDT) testing is starting 
to be very important from the application point of view since can provide additional information for lifetime 
expectancy of different optics. 

For the LIDT measurement, two commercial metallic mirrors were selected for their broadband reflectance, 
affordability and known structure (as opposed to dielectric). The mirrors were tested using a 1-on-1 and N-on-
1 methodology, according to ISO 21254-1:4, while Bivoj laser system (10 ns, 10 Hz, 1030 nm) [9]. The LIDT 
results were discussed for each methodology and compared with the producer’s information publicly available. 

2. EXPERIMENT SETUP 

The measurement was performed in Class 7 clean room, with controlled environment, in HiLASE centre [10], 
as described in the Figure 1. Samples were tested in accordance with the ISO 21254-1:4 protocols, using  
1-on-1 and S-on-1 procedure. Camera based damage detection was used in situ while a confocal laser 
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microscope performed the post mortem check. Damage threshold value was defined at zero damage 
probability level by linear extrapolation. 

 
Figure 1 Experimental arrangement for LIDT testing: HWP - half wave plate, TFP - thin film polarizer,  

FM - fast mirror (flipper), BD - beam dump, HR - high reflective mirror, BS - beam sampler, ND - neutral 
density filter, PD - fast photodiode, BP - CMOS-based camera for beam profiling 

a) b) c) 
Figure 2 Spatial profile of the laser beam: a) - 2D beam profile in the nearfield, b) - temporal profile  

and c) - Gaussian profile (color distribution) of the laser beam in the target plane 

Two metallic (Au and Ag) 2” mirrors, commercially available, which also had information related to the LIDT 
values, were selected for the task. Both mirrors are used in wide range of laser systems due to their low cost 
and wide reflectance range. The gold mirror is capable if reflecting in NIR (near infrared) and IR Ravg > 96 % 
from 800 nm to 20 μm which make it almost universal. The silver mirror has better characteristic in the visible 
part, being able to reflect almost down to UV region Ravg > 97.5 % for 450 nm - 2 µm which is very useful when 
using laser systems with higher harmonics generation. The IR reflectance was similar with the one of gold 
mirror Ravg > 96 % for 2 - 20 µm. Both mirrors came in “protected” version - a thin SiO2 overcoat was used to 
protect the soft metallic surfaces from scratches, which might appear during cleaning process. The vendor 
states LIDT values for the mirrors as 2 J/cm2 and 3 J/cm2 for gold and respectively silver mirrors. The specified 
test parameters are not complete, stating only the wavelength, pulse duration, repetition rate and beam 
diameter (1064 nm, 10 ns, 10 Hz, Ø 1.000 mm). Other important parameters such as number of pulses, 
distance between two irradiated sites was also not mentioned in the test details. 
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3. LIDT RESULTS AND DISCUSSION  

Our laser parameters are very close to those used by the manufacturer, 1030 vs 1064 nm same pulse width 
and repetition rate and smaller beam diameter 650 vs 1000 µm (Figure 2c). The exact test procedure used 
by the manufacturer was not available, so a wide range of test would be more relevant. The traditional 1-on-1 
testing gives the highest LIDT values, which are decreasing with the number of pulses. Our target was to use 
an N-on-1 procedure, where N = 1, 10 and 100 pulses (Figure 3) trying to cover as much as possible of the 
eventual measurement ranges. The LIDT results are very similar for both samples, but much lower than 
expected (Table 1). Even if we take the 1-on-1 testing, which achieved the highest LIDT value; our results are 
well below the 50 % of declared values. The particularity of the silver mirror can be seen in the results 
presented in Figure 3b, d and f where one can notice the scattering of the damage probability points. This is 
a characteristic mark of small damages which cannot be detected in situ by due to insufficient magnification of 
the objective, but are visible when the sample is scanned (post mortem) using the confocal microscope. A 
bigger testing surface would be required to provide better statistics, but that would deform de test results, since 
it is obvious that polishing and coating of bigger substrates poses greater challenges than smaller ones.  

  

a) Au mirror 1-on-1 b) Ag mirror 1-on-1 

  

c) Au mirror 10-on-1 d) Ag mirror 10-on-1 

  

e) Au mirror 100-on-1 f) Ag mirror 100-on-1 

Figure 3 Damage probabilities for gold and silver mirrors in regards to the pulse count 
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Table 1 LIDT results for gold and silver mirrors, compared with manufacturer’s declared value 

 
1-on-1 

(J/cm2) 

10-on-1 

(J/cm2) 

100-on-1 

(J/cm2) 

Manufacturer LIDT 

(J/cm2) 

Au protected mirror 0.86 0.67 0.60 2.00 

Ag protected mirror 0.81 0.83 0.57 3.00 

Looking at the damage sites morphology, we can see distinct patters for the two mirrors. On 1-on-1 test 
(Figure 4a), the gold mirror has well defined damage crater, with a visible SiO2 and Au thin films separation. 
This is a mark of dielectric removal. By increasing the number of pulses on the site, it is possible to see the 
gold film melting and removal up to the substrate (Figure 4 b-c). 

Crater morphology in silver mirrors (Figure 4e) shows a tendency to delaminate over wider ranges than 
irradiated. This could be a signal of stressed films, which are not managing the extra compressive wave of the 
laser. In Figure 4 e-f are visible delamination around the test site. It looks like the pressure wave creates a lift-
off effect on the nearby areas. Perhaps issues with silver adhesion needs to be solved during the 
manufacturing process. 

Trying to deeply understand the issue, we are looking at different manufacturers to see what their results are 
and we find out that another one is declaring 0.8 and 0.5 J/cm2 for gold and silver mirrors. Looking at the third 
vendor, the LIDT values are 0.9 and 1.8 J/cm2 for the same mirror type. It seems that there is an agreement 
on a value of 0.8 J/cm2 for protected gold mirror, similar with our findings. The silver mirrors seem not to be 
fully in agreement with our results, with values ranging from 0.5 to 1.8 J/cm2. Perhaps the oxidation/tarnishing 
of the silver coating has a higher impact than the quality of the thin film. All manufacturer recommends extra 
care when handling the silver mirrors, low humidity environment being preferred. Although our laboratory 
conditions are fulfilling those criteria (21 °C, RH < 40 %), during the storage and experiment, we cannot 
envisage the manufacturer’s storage and transport conditions. 

   
a) Au 1-on-1 b) Au 10-on-1 c) Au 100-on-1 

   
d) Ag 1-on-1 e) Ag 10-on-1 f) Ag 100-on-1 

Figure 3 Laser confocal microscopy images of the damaged sites  
(top row - gold mirror and bottom one silver mirror) 
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4. CONCLUSION 

The selection of quality optics for surface processing using laser beams is not a trivial task. It seems like a 
poor understanding of the LIDT standard, meaning of its values and conversion of those data into useful info 
for application area can create issues. It is not clear whether the all vendors are performing LIDT tests 
according to the ISO 21254-1:4 recommendations, since most of the tests details are not available. Care needs 
to be taken in account from the moment of optics delivery, where microscope inspection should be necessary. 
This step will eliminate any undesirable aging effects of certain components used for high-energy/high-power 
applications. Proper testing, using as much as possible a laser source similar if not identical to one intended, 
would eliminate much of the uncertainties, allowing for safer usage of laser systems and thus creating the 
context for smaller, highly ordered, fast produced surface nanostructure. 
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