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Abstract 

A quantitative comparison was made of the efficiency of conjugation of immunoglobulins G and gold 

nanoparticles obtained by the Turkevich-Frens method. The conjugates were synthesized by physical 

adsorption and covalent immobilization using orthopyridyl disulfide polyethylene glycol succinimidyl ester 

(OPSS-PEG-NHS). The study is conducted using an original method of determining the composition of protein 

nanoconjugates based on measuring the intrinsic fluorescence of tryptophan in the protein. The percentage of 

bound immunoglobulins was higher when using OPSS-PEG-NHS: 43% versus 22% for adsorption conjugation 

at an added IgG concentration of 2.3 μg/ml. After increasing the IgG concentration to 4.6 μg/ml, the percentage 

of binding immunoglobulins was close for the two methods of the conjugation: 26% and 22%, respectively, 

which may indicate the filling of the surface of the particles. 
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1. INTRODUCTION 

Conjugates of gold nanoparticles (GNPs) with bioreceptor molecules (e.g., antibodies) have found use as 

applications for solving many biochemical and bioanalytical tasks [1,2]. The main method of obtaining GNPs 

is the citrate reduction of hydrochloric acid (Turkevich-Frens method) [3,4]. This technique has several 

advantages: a simple and reproducible synthesis, the ability to obtain particles in a wide range of sizes (10-

150 nm), and the stability of the colloid due to the stabilization of particles by citrate ions. Citrate ions can be 

easily replaced by other molecules; therefore, such stabilization does not limit the possibility of surface 

modification. 

For the functionalization of GNPs by the biomolecules, two main approaches are used: physical adsorption 

and covalent binding [5-8]. Physical adsorption is the most widespread technique as a result of its 

methodological simplicity and minimal impact on the structure and properties of the adsorbed molecules [9]. 

The main disadvantage of noncovalent immobilization is the possible partial desorption of protein molecules 

and, consequently, a decrease in the functional activity of the conjugate [10,11]. 

Despite many methods having been proposed for studying the composition of nanoconjugates (see the review 

in [12]), the number of molecules bound to the GNP remains debatable. This is a consequence of significant 

differences in methods and conditions for the preparation of conjugates. 

A comparative study was conducted on the composition of GNPs’ conjugates with antibodies obtained in two 

ways: direct adsorption and covalent binding using orthopyridyl disulfide polyethylene glycol succinimidyl ester 

(OPSS-PEG-NHS). The quantitative composition of the conjugates was determined by fluorescence 

spectroscopy [13]. This method is based on determining the intrinsic fluorescence of tryptophan in the protein 

and allows for evaluation of the composition of protein conjugates without the need for additional labels. 

https://doi.org/10.37904/nanocon.2019.8500 
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2. EXPERIMENTAL 

The present study used monoclonal anti-troponin I antibodies, IC4 clone (“Bialexa”, Russia). OPSS-PEG-NHS 

(MW = 5,000) and thiolated PEG (PEG-SH, MW = 5,000) were obtained from Creative PEG Works (Chapel Hill, 

NC, USA). 

2.1. Synthesis of GNPs 

GNPs were synthesized according to the Frens method [3] with modifications [14]. First, 1.0 ml of a 1 % 

aqueous solution of hydrochloric acid was added to 97.5 ml of deionized water and brought to a boil. Then, 

1.5 ml of a 1% aqueous sodium citrate solution was added and stirring. The mixture was boiled for 25 min, 

cooled, and stored at 4-6 °С. The spectra of GNPs’ preparations were recorded using a Biochrom Libra S60 

spectrophotometer (Biochrom, UK). 

2.2. Synthesis of antibody-GNP conjugates by adsorption immobilization 

In accordance with the procedure described previously [15], GNP solutions (D520 = 1.0, pH 9.0) were added to 

the solutions of antibodies at concentrations of 4.6 and 2.3 μg/ml. Antibody concentrations were chosen on 

the basis of theoretical calculations of the amounts of antibodies forming a monolayer coating on the surface 

of the GNPs with different diameters. The mixtures were incubated for 30 min at room temperature and stirred, 

after which an aqueous PEG-SH solution was added to a final concentration of 0.25 %. GNP-IgG conjugates 

were separated from unbound antibodies by centrifugation for 10 min at 12,000 g and 4 °С using an Allegra 

64R centrifuge (Beckman Coulter, USA). The precipitate was suspended in a 20 mM Tris-HCl buffer, pH 7.6, 

containing 1.0 % BSA, 1.0 % sucrose, 0.1 % Tween 20, and 0.1 % sodium azide. 

2.3. Synthesis of antibody-GNP conjugates by covalent immobilization 

First, OPSS-PEG-NHS cross-linker was reacted overnight with IC4 at a 10:1 molar ratio in 100 mM sodium 

bicarbonate (pH 8.5). Modified antibodies were purified by gel filtration. Then, OPSS-PEG-NHS-treated 

antibodies were added to GNPs for 2 h to obtain the conjugates (final concentrations of OPSS-PEG-NHS-

treated antibodies were 4.6 and 2.3 μg/ml). In the next step, 20 μL of 1 mM PEG-SH was added to additionally 

stabilize the nanoparticles. Finally, the conjugates were centrifuged at 12,000 g for 10 min. 

2.4. Determination of the composition of nanoconjugates 

The supernatant after centrifugation of the conjugates was divided into two parts. The first part, in a volume of 

200 μl, was added to the microplate wells (Nunc MaxiSorp white microplates; Roskilde, Denmark). IC4 

antibodies were added to the second part to a final concentration of 6 μg/ml, and 200 μl of the obtained 

solutions was transferred to the microplate wells and used as a calibration solution. The fluorescence was 

measured on a microplate reader (Perkin Elmer En Spire 2300, Waltham, MA) with excitation and emission 

wavelengths of 280 nm and 350 nm, respectively. 

The protein concentration in the supernatant (in μg/ml) was determined by the following formula:  

6 * N / (C - N), 

where N is the fluorescence in the supernatant, C is the fluorescence in the calibration solution, and 6 is the 

concentration of added antibodies in the calibration solution in μg/ml. 

The difference between the initially added protein concentration and its concentration in the supernatant gives 

the concentration of the protein conjugated with GNPs. 
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3. RESULTS AND DISCUSSION 

3.1. Characteristic of GNPs 

Dimensional characteristics of the GNPs’ preparation were obtained by transmission electron microscopy. The 

average diameter of the particles was 33.7 nm. Particle concentration was determined by ICP-MS according 

to the method described by Byzova et al. [16]. According to the data obtained, 1.3 • 1011 GNPs were contained 

in 1 ml of the solution. 

IgGs were added to GNPs in two concentrations, based on the calculation of 25 nm2 and 50 nm2 of the particle 

surface area per one IgG molecule. The calculated amounts of GNPs and immunoglobulins are summarized 

in Table 1. 

Table 1 Quantitative parameters of GNPs and added IgG during the conjugation 

Diameter, 
nm 

Surface 
area, nm2 

GNPs / ml 
IgG per particle 

(1)* 
IgG per particle 

(2)* 
[IgG] (1)*, 

μg/ml 
[IgG] (2)*, 

μg/ml 

33.7 3566 1.3 • 1011 72 143 2.3 4.6 

* (1) at the rate of 1 IgG molecule on 50 nm2 of the GNP surface; (2) at the rate of 1 IgG molecule on 25 nm2 

of the GNP surface. 

3.2. Determination of the composition of nanoconjugates 

The intrinsic fluorescence of a protein is a 

convenient tool for determining its 

concentration. Tryptophan is the most 

intensely fluorescent amino acid [17]. 

However, its fluorescence strongly depends 

on its molecular environment, including the 

ion composition of the solution [13]. This does 

not allow the use of calibration solutions that 

differ from the test sample in ionic 

composition. To account for this, the addition 

of a known amount of protein directly in the 

analyzed sample is proposed. In this case, 

the difference in fluorescence in the sample 

with and without an additive allows for 

estimation of the signal-to-protein ratio and, 

thus, calculation of the protein concentration 

in the sample. For this, it is necessary that in 

the entire range of measured concentrations, 

strict proportionality of the signal and concentration is observed. Proportionality was verified by measuring the 

fluorescence of IgG solutions in the supernatants after centrifugation of GNPs. 

The dependence of the fluorescence intensity at 350 nm on the concentration of added protein was determined 

in the calibration solutions and in the test samples. In the concentration range of 0-30 μg/mL, dependence of 

the intensity of the protein fluorescence on the concentration in the calibration solution was linear (R was 

>0.99; Figure 1). 

Next, fluorescence was measured in the samples obtained after centrifugation of the conjugates of GNPs with 

IgG and calibration solutions. The calibration solutions for each sample were aliquots of the corresponding 

Figure 1 Fluorescence in solutions containing known IgG 

concentrations 
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sample with added IgG at a final concentration of 6 μg/ml. The volume of an aliquot after the addition of IgG 

changed by no more than 2.5 %; therefore, the change in the concentrations of the components of the sample 

can be neglected. 

The obtained fluorescence values for 4 samples and 4 corresponding calibration solutions are presented in 

Figure 2. 

 
Figure 2 Fluorescence in supernatants of conjugate samples (1-4) and calibration solutions (5-8). The 

supernatants of the GNPs conjugates: 1-2.3 μg/ml of IgG, covalent conjugation; 2-4.6 μg/ml of IgG, covalent 

conjugation; 3-2.3 μg/ml of IgG, adsorption conjugation; 4-4.6 μg/ml of IgG, adsorption conjugation. 

Based on the obtained fluorescence values, the protein concentrations in the supernatants and in the 

conjugates were calculated (Table 2). 

Table 2 Quantitative parameters of GNPs and added IgG during conjugation 

Sample 
IgG concentration 
in the supernatant 

IgG concentration 
in the conjugate 

% of 
binding 

GNPs + 2.3 μg/ml of IgG, covalent conjugation 1.3 1.0 43 

GNPs + 4.6 μg/ml of IgG, covalent conjugation 3.4 1.2 26 

GNPs + 2.3 μg/ml of IgG, adsorption conjugation 1.8 0.5 22 

GNPs + 4.6 μg/ml of IgG, adsorption conjugation 3.6 1.0 22 

The presented data indicate a more efficient binding of IgG during covalent immobilization by OPSS-PEG-

NHS than with adsorption. However, for a denser fit, the advantage of the covalent method is negligible. 

Probably, in this case, steric difficulties for contact of IgG with the surface became a limiting factor. 

4. CONCLUSION 

Covalent immobilization of IgG appears to be a more effective way of functionalizing GNPs than physical 

adsorption. Despite the complication of the conjugation procedure, covalent immobilization allows the 

achievement of a higher coverage of the particle surface by IgG. In addition, a higher strength of interaction 

suggests the greater stability of covalent nanoconjugates during their storage. 
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