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Abstract  

We introduce a straightforward mathematical method for improving the AFM image resolution, applied to image 

analysis of helicene-based macrocycles adsorbed on HOPG. The method reveals structural details from 

insufficiently resolved AFM images and attributes them to internal structure and ordering of the macrocycles. 

Our findings are also corroborated by molecular mechanics simulations, validating that the structure provided 

by the method has lower potential energy compared to other tested macrocycle arrangements.  
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1. INTRODUCTION 

Mathematical data analysis plays a key role in many areas of science. Modeling and simulations are often 

used to improve the image resolution, sometimes obtained on the instrumentation limit. Recently, the first 

image of a black hole has been obtained using a mathematical approach [1]. For many years, astronomers 

have been using multiple images of stars and planets to combine information only from the part of images with 

best resolution and thus obtain an image with higher resolution than original images [2]. Some methods use a 

precisely moved low resolution camera to get slightly shifted images which are then merged into a single higher 

quality image [3,4]. Similar approach can be used for tiny movement or rotation of the object [5]. If the imaging 

process is too long, the compressive imaging method can be applied [6]. If the measurements are 

undersampled and must be done too quickly, reconstruction of data can be used [7]. 

In atomic force microscopy (AFM) or scanning tunneling microscopy (STM) studies, computer models and 

simulations are also widely employed. For example, a numerical STM/AFM model can take into account the 

probe relaxation due to the tip-sample interaction. This way, not only the experimentally observed intra- and 

intermolecular contrasts but also their evolution upon tip approach are described [8]. Computer models can be 

used to analyze nanoparticle size distribution and estimate the uncertainties of nanoparticle size on rough 

substrates or non-isolated nanoparticles [9]. Analysis of large datasets was also utilized to evaluate friction 

and energy dissipation between MoS2 sample and silicon cantilever [10]. Computer simulations together with 

optical data can be used to study cell behavior on patterned samples [11]. 

High resolution AFM/STM microscopy has become an extremely powerful tool for the study of individual 

molecules. Images with submolecular resolution can be routinely obtained today [12]. However, drawbacks of 

this method are a very expensive UHV AFM/STM apparatus, long experimental times and difficulties in sample 
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preparation, especially in the case of large molecules. For these reasons, methods increasing the resolution 

of ambient AFM/STM images are highly desirable and could circumvent the aforementioned challenges. 

Herein, we introduce a straightforward and relatively simple mathematical method for obtaining sub-molecular 

structural details from ambient AFM images of molecules. The method is demonstrated on images of 4 nm 

large helicene-based macrocycle molecules adsorbed on highly ordered pyrolytic graphite (HOPG) surface. 

The initial stage of the proposed method is extraction of an average surface cell, summarizing the prominent 

structural features and arrangement of the adsorbed molecules. The structural details of the system are 

highlighted while noise and imperfections in the arrangement are inherently suppressed at this stage. The 

obtained average unit cell is subsequently analyzed by comparison with a simple 3D surface model obtained 

from an atomic molecular structure, providing a valuable information about the morphology and orientation of 

the molecules on the surface. 

2. EXPERIMENTAL DETAILS 

2.1. AFM measurement 

The synthesis procedure of the helicene-based macrocycles will be presented elsewhere. Its structure was 

inferred from spectroscopic data (MALDI MS, NMR, IR). For AFM measurements, 20 µl of the macrocycle 

(c = 10-7g/ml) solution in dichloromethane (VWR, for HPLC 99.8 %, filtered through a microfilter) was drop 

casted on a freshly cleaved piece of HOPG substrate. Then the sample was used for AFM studies on 

Dimension Icon AFM (Bruker). The samples were scanned in ambient conditions in Peak Force QNM mode 

using ultrasharp SLN-B cantilevers (Bruker) with tip radius r = 2 nm. 100 x 100 nm images were obtained with 

resolution 2000 x 2000 px (20 px/nm) at scanning speed 0.1 Hz. Applied load was 20 pN with peak force 

amplitude of 30 nm. The obtained images were processed by 1D FFT filtering to remove clear periodical AFM 

noise and blurring to reduce the overall noise level. 

2.2. Computer analysis 

The computer analysis of AFM experimental data was performed using Matlab software on HP Pro 3400 

computer with Intel® Core™ i5-2400 processor and on cluster Ferret5 (CIIRC CTU in Prague) with 12 cores. 

The geometry of the macrocycle molecule was obtained from a DFT (B3LYP/6-31G/GD3) calculation using 

Gaussian [13]. Mutual potential energy of two macrocycle molecules placed on HOPG surface was 

investigated using QuantumATK P-2019 software [14] with ReaxFF CHONi 2015 force field [15].  

3. RESULTS AND DISCUSSION 

3.1. Model system 

We demonstrate our method on an ambient AFM image of a thin layer of the helicene-based macrocycles 

adsorbed on HOPG surface (Figure 1a). Based on the AFM results the measured height of helicene molecule 

is 0.4 nm, suggesting that the AFM tip slightly presses the molecule even at quite a low applied force of 20 pN. 

The layer of molecules consists of parallel stripes organized into domains of 120° relative orientation. It is 

obvious from the magnified internal structure of the domains (Figure 1b) that the stripes are divided into two 

substripes but no other structural details can be visually distinguished in the image. This can be attributed to 

the instrument’s resolution limit under ambient conditions, considering the RMS roughness in the whole image 

of 80 pm and noise level of 70 pm. 

The basic principle of the method is presented in Figures 1b to 1c. It comprises of four consequent steps as 

described in detail in the following chapters. First, a region of interest is chosen in the original AFM image. 

This region is divided into a matrix of cells. The dimensions of the unit cell are automatically varied during the 
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optimization step. Each pixel of specific coordinates from these cells is summarized in the average unit cell 

and this process is repeated for every single pixel of the average unit cell. The obtained average cell is 

analyzed by comparison with the geometry model of the studied molecule. 

3.2. Complete model cell formation 

We selected a 37x20 nm2 rectangular region in the original 100 x 100 nm2 image (black rectangle in  

Figure 1a and 1b) with partially visible structural details. It was divided into v x w closely packed rectangular 

cells (8 x 4 = 32 in this case) with a variable cell size of m x n pixels (91 x 73 px in this case). The offsets of 

the cell in the left bottom corner (marked with magenta dot) were xs and ys (0 px and 40 px in this case). Real 

AFM height values from v x w cells were then summarized (as represented by the red lines) in one point of an 

average unit cell using Matlab software. The incomplete cells on the edges of AFM images were not taken into 

account. This procedure was repeated for each point (91 x 73 px = 6643 points) in a model cell to create the 

average unit cell H(x,y), shown in Figure 1c. Note that only experimental values were used to create the 

average unit cell. Subsequently, we copied the average unit cell (purple rectangle in Figure 1d) three times in 

vertical direction and three times in horizontal direction to create a complete model cell (Figure 1d).  

   

Figure 1 a) AFM topography image of thin film of the helicene-based macrocycle molecules on HOPG 

substrate. Z scale=0.4 nm. b) 37 x 20 nm2 AFM image with 32 cells 91 x 73 px. c) Averaged unit cell, size 

91 x 73 px, 4.55 x 3.65 nm. d) Complete model cell, size 273 x 219 px, 13.65 x 10.95 nm. Yellow areas are 

the highest.  

3.3. Helicene-based macrocycle and its molecular model 

The structure of the helicene-based macrocycle molecule is shown in Figure 2a. It is a non-planar molecule 

with 2 nm height and ~4 nm diameter. For the purpose of the image analysis, we created its molecular model. 

A 20 x 20 points (5 x 5 nm) mesh was set up and all z values of the mesh were changed to 0 as a background. 

Therefore, this mesh had 400 points with (xi, yi, 0) coordinates at the beginning. Then we removed all points 

which were outside a circle of 2.5 nm radius, placed in the middle of the mesh. The macrocycle molecule 

comprising a total of 408 atoms (carbon and hydrogen) was placed to the center of the mesh. For each atom, 

its lateral position in the mesh was found and changed from the xi, yi, 0 to xj, yj, zj value, where zi was obtained 

from the DFT optimized structure. This procedure was then repeated for each atom in the molecule. When 

several atoms were placed in the same lateral position in the mesh, the xj, yj, zj position of the atom with higher 

zj was taken. As a result, this mesh had 305 points, 184 were points with zero height, while 121 were points 

with the position of the highest atom, as depicted in Figure 2b. Such mesh can be understood as an AFM 
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image of an individual molecule placed on a flat surface obtained with a very sharp tip (diameter ~ 0.25 nm, 

cone angle 0°). This model was introduced in order to keep zero height values not only outside the molecule 

but also inside it, and to consider the fact that many interior atoms cannot be reached by the AFM tip. Figure 2b 

also shows that for the case of 20 x 20 point mesh there are no holes inside the macrocycle helicenes and 

trityl groups, so there is no need to take into account molecular orbitals, the knowledge of atoms position is 

enough. 

 

Figure 2 a) The top view of the macrocycle molecule structure. b) The top view of the 3D macrocycle 

molecule modelled by a mesh. 

3.4.  Procedure for complete model cell analysis 

To analyze the possible positions and orientations of the molecules in the image, the following automatic data 

analysis was performed employing the Matlab software. We introduced a sum of differences S, quantifying the 

agreement between the atom heights in the AFM complete model cell, characterized by H(x,y) topography 

surface, and the molecular model defined by the mesh zj(xj,yj). 

� = ∑ ������� , 
�� − 
(�� , 
�)�
����

���               (1) 

First, the z height of the macrocycle was linearly adjusted by defining the parameter r  which reflects how the 

AFM tip compresses the molecule. For our molecules, we used value r = 0.0984. Next, the molecule was 

automatically moved across the complete model cell (1681 different positions for each molecule across the 

central part of a complete model cell, all area inside purple rectangle in Figure 1d to cover all possible 

positions) and rotated (360 different angles with 1° step to cover all possible orientations) to find the minimum 

S value. Subsequently, the size of the complete model cell (156 different sizes, 45-200 px, with 1 px step) and 

the position of the lower left corner of the first cell (39 different positions, 0-10 px in horizontal direction and 0-

60 px in vertical direction with 5 px step) were changed in order to find out which complete model cell gives 

the lowest S value. Altogether, the S value was calculated approx. 3 x 109 times. 

3.5.  Optimization analysis of the complete model cells for a 37 x 20 nm2 image 

Values S for all the model cells (horizontal size 91 px, vertical sizes 45-200 px, horizontal shift 0-10 px and 

vertical shifts 0-60 px) are shown in Figure 3a. We defined the horizontal size of the complete model cell  

m = 91 px from the profile taken across AFM image shown in Figure 1b. We also performed calculations for 

horizontal sizes 89 px, 90 px, and 92 px with quite similar results, except a slightly worse alignment of both 

substripes. At least 16 cells were combined to create the complete model cell. 

We identified three groups of vertical sizes with low S values (local minima). The first group had vertical sizes 

1p1 and 2p1, second group had vertical sizes 1p2 and 2p2, third group had vertical sizes 1p3 and 2p3. np1 

= 51 px, np2 = 73 px, np3 = 93 px. Sizes 1p correspond to the placement of one molecule into the averaged unit 

cell. Sizes 2p can be called “second harmonic” or “doubled sized cells”, because these cells are large and two 

molecules can be placed in such averaged unit cell. 
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Figure 3 a) Values S for complete model cells (horizontal size m=91 px, vertical sizes n=45-200 px, 

horizontal shift xs=0-10 px, vertical shift ys=0-60 px).  

b) Angular distribution of the macrocycles with the lowest S value. 

To get our results looking closer to obtained AFM data, we placed one macrocycle to each of the 8 outside 

parts of the complete model cell at the positions analogous to the central macrocycle, altogether 9 molecules. 

In this and all other presented images, only the positions of the highest atoms in the mesh are shown. Points 

with zero zj values are not shown either. Individual atoms are marked with green circles while the inside color 

scale indicates the height of the atom (yellow corresponds to the highest atom). We choose the same color 

scale for the molecule and for the complete model cell on purpose. In this case, the worse color visibility of the 

molecule indicates better height alignment of the molecule. 

Figure 4a shows that the vertical size 1p1 probably corresponds to the packing of the macrocycle molecules 

far too dense for the rectangular arrangement (180° or 90° symmetry), np1 = 51 px. We consider such 

arrangement as practically impossible. Figure 4b shows that the vertical size 1p2 could correspond to the 

densest packing of the macrocycle molecules with a quite narrow free space, np2 = 73 px = 3.65 nm. We believe 

that this is one of the most probable arrangements of the macrocycles on HOPG surface with monolayer 

coverage. Figure 4c shows that the vertical size 1p3 (global minimum) corresponds to the packing of the 

macrocycle molecules with a lot of free space which does not seem to be a realistic configuration either, 

np3 = 93 px = 4.65 nm.  

 

Figure 4 a) The complete model cell 273 x 153 px with 9 macrocycles at the same positions as the central 

macrocycle. b) The complete model cell 273 x 219 px with 9 macrocycles. c) The complete model cell  

273 x 279 px with 9 macrocycles 

One can see the importance to copy the averaged unit cell for making larger model cell. Otherwise, the 

migration of the macrocycle outside the averaged unit cell caused the decrease of the S value and the cell 

with the lowest S had the lowest number of the mesh points inside the averaged unit cell.  

For each studied model cell (with different m, n, xs and ys values) we found one angle of the macrocycle 

rotation, corresponding to the lowest S value (between different positions of the macrocycle relative to the 
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complete model cell and the rotation of the macrocycle), analyzed the angle of rotation for different complete 

model cells and found two clusters with slightly different orientations of the macrocycle molecules in each 

cluster (Figure 3b). Two clusters (-19.7±1.2°, 159.9±0.6°) are separated by 180°, which is basically the same 

macrocycle orientation. This result is a good indication for only one possible orientation of macrocycles on 

HOPG surface with possible 90° symmetry.  

3.6.  Molecular mechanics simulations 

To corroborate the above results, we investigated relative potential energy of the molecules on a graphite 

surface by molecular mechanics. Figure 5 shows two studied arrangements of the macrocycles (horizontal 

and vertical) and relative energy with respect to the mutual separation between the molecules (center to 

center). The attraction between the molecules manifests itself in global energy minima before the steep energy 

rise as the molecules start to collide. The arrangements corresponding to the global minima are shown in 

Figure 5a. In accordance with the Van der Waals character of the interaction, the depth of the energy minima 

depends mainly on the number of closely interacting atoms of the two molecules. While the horizontal 

orientation profile shows only a very shallow minimum (one pair of trityl groups is colliding), the vertical 

orientation is markedly lower in energy (two pairs of trityl groups are colliding).  

 

Figure 5 a) Horizontal and vertical arrangements studied by molecular mechanics simulations. The 

corresponding separation distances for those images are written below the images. b) The potential energy 

vs macrocycle separation. Positions of minima are marked with circles. 

3.7.  Comparison between experimental and theoretical results. 

The separation of molecules in the global minimum of the horizontal arrangement (4.65 nm) is similar to the 

experimental value for distance between the observed stripes (4.55 nm), indicating good agreement between 

theoretical and experimental results. This agreement also indicates that molecules indeed can form so tightly 

packed stripes. Similarly, the separation of molecules in the global minimum of the vertical arrangement 

(3.85 nm) is also in a good agreement with experimentally observed value for distance of the molecules within 

the stripes (3.65 nm), indicating that molecules can indeed be so tightly packed within the stripes in vertical 

direction, too. Therefore, the arrangement shown in Figure 4b can be considered as a energetically favorable 

monolayer with the densest packing of the macrocycles on the HOPG surface with 90° symmetry. 

4. CONCLUSIONS 

In this work we present straightforward mathematical method for analyzing ordinary AFM images obtained in 

ambient conditions on the samples with self-assembled patterns of helicene-based macrocycle molecules. We 

were able to reveal sub-molecular features from AFM images and we found possible arrangement of 

macrocycles on HOPG surface. Molecular mechanics simulations found corresponding arrangement with 
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minimum in potential energy. The presented method can be applied for any molecule of known atomic xyz 

coordinates and to any height image with periodic pattern and rectangular symmetry. The approach is 

sufficiently general so that it can be applied also to other properties, not only structural but for instance 

electronic.  
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