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Abstract 

In this paper photoluminescence properties of aqueous suspensions of carbon nanoparticles (nanodiamonds, 

carbon dots and complexes on their basis) with different ratio of surface carbon in sp3- and sp2-hybridizations 

were studied by methods of Raman, fluorescence and IR absorption spectroscopy. It was found that intensity 

of photoluminescence correlates with amount of carbon in non-diamond phase on the surface of nanoparticles. 

Nanoparticles with high non-diamond carbon phase content revealed more intense photoluminescence. The 

obtained results support the hypothesis about surface nature of photoluminescence of nanodiamonds and 

carbon dots. 
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1. INTRODUCTION 

Currently, а development of photoluminescent biomarkers - non-toxic, biocompatible, stable luminescent 

nanomaterials is extremely relevant. Nanodiamonds are one of the most promising [1-4] materials. In addition 

to the mentioned above properties, they have sorption properties, which makes it possible to use them as 

adsorbents or drug carriers [5-7]. The unique photoluminescent properties made the metal-containing quantum 

dots competitive with organic dyes and determined the high potential of their use as biological markers [1,2]. 

However, detected toxicity of these quantum dots limits the field of their application. An alternative to metal-

containing quantum dots are carbon quantum dots, which have not only stable photoluminescence, but also 

high biocompatibility [3].  

One of the most important discoveries of the last decades in the field of photoluminescent nanoparticles is the 

detection of bright luminescence in carbon nanoparticles (CNP) - carbon dots (CD) and nanodiamonds (ND) - 

during passivation of their surface or irradiation of diamond nanocrystals by high-energy particles. These 

luminescent carbon nanoparticles gradually come to the leaders among high-contrast optical materials for 

biovisualization due to compliance to the criteria of applicability in biology and medicine [1-7]. However, for the 

proper use of such CNP as photoluminescent biomarkers and drug carriers, it is necessary to be able to govern 

their photoluminescent and sorption properties. And it is possible only on the basis of understanding 

mechanisms of formation of photoluminescence and sorption ability of CNP. Unfortunately, at the moment the 

nature of surface fluorescence of CNP remains unclear. Photoluminescence caused by defects in the surface 

of carbon in sp2-hybridization is considered as one of the possible mechanisms of photoluminescence of CD 

and ND. Defects are defined as any disturbance of the carbon structure in sp2-hybridization which provides 

formation of additional surface electron levels or traps. According to assumption of the authors [8], the optical 

properties of carbon nanomaterials (including photoluminescent ones [9]) having carbon in their structure in 

both sp2-and sp3-hybridizations are determined by the π states of electrons of carbon atoms with sp2-
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hybridization. Photoluminescence in this system depends on electron-hole recombination in localized π states 

in the band gap [10,11]. Due to the wide size distribution of such sp2 clusters, caused by low value of the 

binding energy, wide spectrum of photoluminescence is observed from the visible range to the near IR [9].  

Thus, currently, one of the most common in the literature is the hypothesis that the photoluminescence of the 

CNP is to some extent determined by the amount of non-diamond phase of carbon, located on the surface of 

the CNP after cleaning and functionalization of the surface [9]. In this paper, this hypothesis is verified: the 

results of study of influence of the amount of non-diamond phase of carbon (primarily sp2-hybridized carbon) 

on the surface of nanoparticles on their photoluminescent properties are presented. For change and control of 

the amount of non-diamond carbon phase on the surface of nanoparticles, several types of CNP surface 

cleaning were carried out. Fluorescence spectroscopy, confocal Raman spectroscopy, and IR absorption 

spectroscopy were used to study the dependence of the CNP fluorescence on the amount of carbon in non-

diamond phase on the surface of nanoparticlesach or solution.  

2. MATERIALS AND METHODS 

2.1. Materials  

In this work, CNP, which significantly differ in the amount of non-diamond carbon phase on the surface: 

detonation nanodiamonds (DND), nanodiamonds, decorated with carbon dots (CDDND), and carbon dots (CD) 

themselves were investigated.  

DND and CDDND were synthesized by the explosion of a mixture of trinitrotoluene (TNT) and 1,3,5 - 

trinitrotoluene-1,3,5-triazine (hexogen) in a water-cooled medium [12]. Purification and surface treatment of 

nanoparticles were carried out in the International Technology Center (Raleigh, USA). CD are the product of 

chemical reactions of intercalation, delamination and oxidation of 400 nm nanographite sheets. CD synthesis 

was carried out in the international Technology Center [13].  

In order to change and control the amount of carbon in non-diamond phase on the surface of CDDND, their 

surface was cleaned in perchloric acid and in the mixture of sulfuric and nitric acids. The CDDND sample was 

treated with perchloric acid HClO4 for 3 hours at 180oC and mixture of nitric and sulfuric acids HNO3+H2SO4 

in 1:3 ratio for 3 hours at 130oC. In order to remove the acids, the samples were centrifuged till deposition, 

followed by the removal of the supernatant and dilution of the precipitate with distilled water. The process was 

repeated 5 times. The final removal of acids was carried out by placing the samples in a vacuum chamber, 

bringing to crystallization and subsequent sublimation of the solvent. Below in the text, these two samples will 

be denoted as CDDND(HClO4) and CDDND (HNO3+H2SO4). 

Deionized bi-distilled water with electrical conductivity of 0.1 µS/cm (Milli-Q) was used to prepare aqueous 

suspensions of the samples.  

2.2. Methods of research  

The composition of the samples was studied by Raman spectroscopy using the Horiba Jobin Yvon LabRAM 

HR-800 confocal laser spectrometer, wavelength 473 nm, the practical spectral resolution was 1 cm-1.  

The study of the functional cover of the CNP was carried out using IR absorption spectroscopy using the Varian 

640-IR FT-IR spectrometer, spectral resolution was 4 cm-1.  

Photoluminescence spectra of the samples were obtained when excited by diode laser (λex=405 nm, output 

power - up to 200 mW). PMT Hamamatsu H-8259-01, operating in the photon counting mode was used as 

detector. The PMT sensitivity in the visible range was 10 photons/count.  
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3. RESULTS AND DISCUSSION 

In this paper, the correlation between the intensity of fluorescence of CNP with different amounts of non-

diamond phase of carbon on the surface and the fraction of this carbon in these nanoparticles. In total, 5 types 

of CNP were used: CD, ND, CDDND, CDDND(HClO4) and CDDND(HNO3+H2SO4). The surface of 

nanoparticles was characterized by IR absorption spectroscopy and confocal Raman spectroscopy. The 

aqueous suspensions of ND, CDDND, CDDND(HClO4) and CDDND(HNO3+H2SO4) with concentrations 1 g/l 

and suspensions of CD with concentration 0.001 g/l were studied. It was established with the help of method 

of dynamic light scattering that sizes of all samples were about 5 nm. 

4. ANALYSIS OF SURFACE GROUPS OF CNP 

The method of IR absorption spectroscopy was used for determination of the composition of the surface groups 

of CNP. The IR absorption spectra of depositions of all 5 evaporated CNP samples are shown in Figure 1.  

 
Figure 1 IR absorption spectrum of studied CNP evaporated from water suspensions 

In the spectra of IR absorption of all five samples one can observe a lot of bands corresponding to the vibrations 

of oxygen-containing functional surface groups. Near 1630 cm-1 there is a band of bending vibrations of OH 

groups. The intense band with a maximum, which varies for different samples in the range of  

1720-1810 cm-1, corresponds to the valence vibrations of C=O groups and indicates a high carboxylation of 

the nanoparticle surface. This is confirmed by the band of bending vibrations of groups C-O-C in the region of 

1100-1140 cm-1[14]. Thus, it follows from the IR absorption spectroscopy data that carboxyl groups dominate 

on the surface of all samples. This means that the difference in the photoluminescent properties of the samples 

is not caused by the functional cover of CNP. 

5. DETERMINATION OF THE RATIO OF CARBON IN THE NON-DIAMOND PHASE AND WITH SP3 

HYBRIDIZATION ON THE SURFACE OF CNP 

The ratio of carbon in non-diamond phase and with sp3 hybridization on the surface of the CNP was 

determined by confocal RAMAN spectroscopy. The broadband signal of CNP photoluminescence was 

approximated linear function and subtracted from the obtained Raman spectra. The obtained Raman spectra 

are presented in Figure 2. 
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Figure 2 Raman spectra of powdered samples of all carbon nanoparticles 

As it follows from the obtained data, in the spectra of all ND there are bands of carbon with sp3 hybridization 

with a maximum near 1329 cm-1. The shift of this band from the value of 1332 cm-1, corresponding to the 

position of this band in the bulk diamond, and its broadening are caused by the phonon confinement effect 

[15,16] and indicate the small sizes of studied ND. In the spectra of all samples one can observe D- and G-

bands with maximums near 1400 cm-1 and 1610 cm-1, respectively. Since the G-band overlaps with the water 

Raman bending band (with maximum near 1630 cm-1), in order to obtain useful G-signal, the band of bending 

vibrations of OH groups of water was subtracted from the band in the range from 1500 to 1700 cm-1. The 

integral intensity of band of the sp3-hybridized carbon with maximum near 1329 cm-1 S(sp3) is proportional to 

the amount of sp3-hybridized carbon in the samples. Since in the range from 1500 cm-1 to 1700 cm-1 the  

G-band of the sp2-hybridization carbon dominates, the sp2 designation will be used in the calculations. By 

calculating the integral intensities of these Raman bands, the ratio of amounts of carbon in different 

hybridizations (V(sp2) and V(sp3)) can be obtained by the following formula: 
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where: 

σ - cross-section of scattering of carbon in the corresponding hybridization. (cm2) 

S  - integral intensity of band. (a. u.) 

V - ratio of atoms in special hybridization. (a. u.) 

The cross-section of Raman scattering for different bands of CNP spectra is different and also depends on the 

excitation wavelength. Unfortunately, for the excitation wavelength 473 nm used in this study, we could not 

find in literature the values of the scattering cross sections of CNP. The values of scattering cross-sections of 

diamond (sp3-hybridization of carbon) σ(sp3) = 2.7•10-29 cm2 and graphite σ(sp2) = 7•10-28 cm2 under excitation 

by laser radiation with wavelength of 514.5 nm obtained by the authors [17] can be used as one of the most 

suitable for our conditions. 

The results of calculations of the ratio of integral intensities of the corresponding spectral bands of Raman 

spectra and the amount of carbon in sp2 and sp3 hybridizations, as well as percent content of the amount of 

sp2-hybridized carbon from the total amount of carbon in the studied CNP are presented in Table 1. 
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Table 1 The ratio of the integral intensities of spectral Raman bands and the amount of carbon sp2/sp3- 

  hybridizations and percent content of carbon of non-diamond phase from the total carbon 

 DND CDDND CDDND HClO4 CDDND H2SO4+HNO3 CD 

S(sp2)/S(sp3) 14.2±2.4 19.1±0.4 1.62±0.10 3.6±0.3 - 

V(sp2)/V(sp3) 0.55±0.14 0.74±0.04 0.063±0.005 0.13±0.01 - 

Part of carbon sp2, % 35±8 42±1 5.9±0.6 12±2 100 

F0 16 52 0.52 1.1 548 

From the calculated data it is possible to make a series of increasing the ratio of the amount of surface carbon 

in sp2-hybridization to the amount of surface carbon in sp3-hybridization: 

ND-CD(HClO4) < ND-CD(HNO3+H2SO4) <ND <CDDND <CD          (2) 

6. PHOTOLUMINESCENCE SPECTROSCOPY OF AQUEOUS SUSPENSIONS OF CNP 

Photoluminescence spectra of the prepared aqueous suspensions of all samples of CNP were obtained when 

excited by laser radiation with a wavelength of 405 nm. The concentration of all samples, except CD, was 1 

g/l, CD concentration was 0.001 g/l. The value of pH for all suspensions was 8. The obtained 

photoluminescence spectra of CNP under 405 nm excitation are shown in Figure 3. The band with maximum 

near 470 nm is the band of valence vibrations of OH groups of water. 

 
Figure 3 Photoluminescence spectra of aqueous suspensions of CNP excited by laser radiation with 

wavelength of 405 nm. (pH = 8). Illustration of calculation of parameter F0 

In order to quantitatively characterize the photoluminescence of samples, the parameter F0 was calculated. It 

is equal to the ratio of the integral photoluminescence intensity of CNP Sfluor to the integral intensity of the 

water Raman valence band Swater (Figure 3) [18]: 

�� 
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where: 

Sfluor - integral intensity of fluorescence 

Swater - integral intensity of water Raman valence band 
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Parameters F0 were calculated for all obtained photoluminescence spectra of aqueous suspensions. For 

suspensions of CD this parameter was recalculated for the CD concentration in water 1 g/L. The values of 

parameters F0 are presented in Table 1. It should be noted that acid treatment of CDDND samples led to 

significant weakening of their photoluminescent properties: the parameters F0 for CDDND(HClO4) and 

CDDND(H2SO4+HNO3) are extremely small. 

It follows from the results that there is an unambiguous relationship between the amount of carbon of the non-

diamond phase on the surface and the intensity of the photoluminescence of the CNP: greater amount of non-

diamond carbon on the surface corresponds to more intense photoluminescence of the samples. On the basis 

of a comparative analysis of the calculated parameters F0, the following sequence of CNP according to the 

intensity of their photoluminescent properties (in ascending order): 

ND-CD(HClO4) < ND-CD(HNO3+H2SO4) < ND < CDDND < CD           (2) 

The obtained sequence corresponds well with series (1) of increasing ratio of surface carbon in sp2 

hybridization to surface carbon in sp3 hybridization. This agreement once again confirms the hypothesis that 

the more carbon in the non-diamond phase there is on the surface of CNP, the more intense is 

photoluminescence of these nanoparticles. 

7. CONCLUSION 

Photoluminescence of CNP with different amounts of carbon in the non-diamond phase on the surface of 

nanoparticles was experimentally investigated. The results of confocal Raman spectroscopy of ND, CD, ND-

CD, CDDND(HClO4), CDDND(HNO3+H2SO4) and photoluminescence spectroscopy of aqueous suspensions 

of these nanoparticles indicate that the intensity of the photoluminescence of CNP in water uniquely depends 

on the ratio of surface carbon in the non-diamond phase and surface carbon with sp3 hybridization. Greater 

amount of carbon in the non-diamond phase on the surface of CNP corresponds to more intense 

photoluminescence of these nanoparticles.  

This study has been performed at the expense of the grant of Russian Science Foundation project No 17-12-

01481.  
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