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Abstract 

All-inorganic perovskite nanocrystals with chemical formula CsPbX3 (X = Cl, Br, and I) attract much scientific 

attention since they possess unique optical properties, such as high extinction coefficients and values of 

emission quantum yield, together with ease of their synthesis and tunability in the chemical composition. 

However, these nanomaterials are still far from their large-scale applications since they lack stability. Here, it 

was shown that the use of a nanoporous glass matrix allowed obtaining the samples with blue, green, and red 

perovskite nanocrystals possessing reproducible optical characteristics which are almost similar to that of their 

colloidal solution. Such a matrix also prevented the fast degradation of nanocrystals both at the storage in 

ambient and under UV-light exposure and/or in the conditions of increased humidity.  
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1. INTRODUCTION 

The development of chemical routes for the synthesis of nanocrystals with crystal lattice of perovskite-type 

(PNCs) with chemical formula CsPbX3 (X = Cl, Br, and I) [1] resulted in the burst of scientific attention since 

the PNCs possess unique optical and electronic properties: high extinction coefficients, high 

photoluminescence (PL) quantum yields reaching 1, and high charge carrier mobility [2,3]. Another advantage 

of these nanomaterials is the tunability of chemical composition together with the ease of fabrication [2] which 

is important for PNCs future utilization in different areas of photovoltaics and optoelectronics. 

However, these materials are unstable and can be easily decomposed under ultra-violet (UV) light exposure 

and while storing in increased humidity [4,5]. At the moment there several ways to tackle this problem: (i) direct 

synthesis in polar solvents [6], (ii) passivation of PNC surface via chemical treatment including the ligand 

engineering [7,8], and (iii) embedding the PNCs into different inert matrices, such as polymers or solid porous 

matrices [9-11]. In the latter approach, the matrix can be chosen from a wide variety of materials either 

soft/flexible or hard/solid which can be related to their further application.  

Here, we investigate the stability of optical responses of all-inorganic PNCs embedded in nanoporous silicate 

matrix (NSM) under the UV exposure and increased humidity. The developed idea on PNC protection is of 

wide interest for their further implementation as active media in solar cells, photodetectors, and light-emitting 

diodes. 
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2. EXPERIMENTAL 

Steady-state spectral measurements of samples were carried out using a UV-3600 spectrophotometer 

(Shimadzu), a FP-1800 spectrofluorometer (Jasco), and a confocal lasing scanning microscope LSM-710 

(Zeiss) equipped with 20× (NA=0.4) objective and a 405 nm laser. For transient photoluminescence 

measurements a confocal microscope MicroTime 100 (PicoQuant) equipped with 100× (NA=0.95) objective 

and 405 nm pulsed diode laser implementing time-correlated single photon counting. To estimate the value 

deviations of each optical parameter the signal from the sample was collected at least in 3 different points. 

Cesium carbonate (Cs2CO3, 99.9%), lead bromide (PbBr2, 98%), lead chloride (PbCl2, 99.999%), lead iodide 

(PbI2, 99.999%), octadecene (ODE, 90%), and oleylamine (OlAm, 70%) were purchased from Merck & Co., 

oleic acid (OA, 85%-92%) was purchased from Fisher. The chemicals were used without any purification. 

PNCs were synthesized according to the previously reported route [1]. As a result of the synthesis, three 

colloidal solutions of CsPb(Cl/Br)3, CsPbBr3, and CsPbI3 with blue, green, and red emission, respectively, were 

obtained and designated hereafter as b-PNCs, g-PNCs, and r-PNCs. The mean size of PNCs was 8±1, 10±4 

and 13±5 nm for b-PNCs, g-PNCs, and r-PNCs, respectively. 

NSMs were fabricated by the procedure reported in [12]. Before the use, the obtained NSMs were annealed 

at 100 ˚C during 1h in a vacuum oven to get rid of moisture and oxygen presented inside the pores. 

3. RESULTS AND DISCUSSION 

From SEM image of NSM shown in Figure 1a it is seen that the pores are of nanometer-size and 

homogeneously distributed within NSM’ volume. The 3D PL image reconstruction of chopped NSM with  

g-PNCs shown in Figure 1b confirmed the PNCs penetration into NSM pores. 

 

Figure 1 (a) SEM image of NSM. Scale bar is of 100 nm. (b) 3D PL image of g-PNCs in NSM 

The confocal PL images of samples showed that the PNCs formed agglomerates on the NSM surface which 

were most probably located at the pore entry. This can be seen as bright spots in the PL images (Figure 2).  

 

Figure 2 PL image of b-PNCs (a), G-PNCs (b), and r-PNCs (c) in NSM. The image size is of 100 × 100 µm  



  Oct 16th - 18th 2019, Brno, Czech Republic, EU 

 

 

623 

Although the formation of agglomerates on NSM surface is an 

undesirable process that may affect optical properties of PNCs, 

however, this helped to close as many pores on the surface as 

possible which, in turn, resulted in the increased protection from the 

moisture and oxygen penetration within the porous matrix. 

The absorption spectra showed increased optical density in the 400-

650 nm spectral region which can be attributed to the presence of the 

PNCs in the NSM volume. The PL spectra shown in Figure 3 of PNCs 

in NSM showed almost unchanged peak positions with the increased 

full width at half maximum (FWHM). It is worth to mention that the 

average PL lifetime is almost preserved after the PNCs embedding 

into the NSMs. This observation suggested that the embedding of 

PNCs into the NSMs didn’t result in the appearance of additional 

nonradiative channels of charge carriers’ recombination. PL 

parameters of investigated samples are summarized in Table 1. 

Table 1 Optical parameters of PNCs in colloidal solution and in NSM 

P-NCs Blue Green Red  

PL peak/ 

FWHM, nm 

PL lifetime, ns PL peak/ 

FWHM, nm 

PL lifetime, ns PL peak/ 

FWHM, nm 

PL lifetime, ns 

Solution 442/20 14±3 510/20 28±4 680/40 110±6 

NSM 438/50 12±1 525/25 24±5 690/50 80±5 

 

Figure 4 Optical properties of b-PNCs (a and c) and g-PNC (b and d) in NSM: PL spectra (a and b) under 

UV exposure, time of exposure is listed in b legend; PL peak position (c and d), Insets in c and d show the 

change in PL lifetime with UV exposure time 

Figure 3 PL spectra of b-PNCs 

(blue), g-PNCs (green), and r-

PNCs (red) in colloidal solution 

(solid lines) and in NSM (dashed 
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First, the samples were examined on the stability of the optical parameters under UV exposure. For that, the 

NSM samples with PNCs were constantly irradiated by a 405 nm laser. The PL spectra for b-PNCs and g-

PNCs in NSM together with the average PL lifetimes are shown in Figure 4. For b-PNCs embedded into NSM 

a broadening of the PL band was observed with almost the same PL peak position. The average PL lifetime 

decreased slightly during the UV-exposure. For g-PNCs in NSM PL band didn’t undergo any significant 

changes. As it was observed for b-PNCs average PL lifetime also decreased slightly with increased exposure 

time. 

Second, the stability of the optical properties of g-PNC embedded into the NSM was probed under the 

increased humidity conditions. For that, the distilled water was dispersed at the 20 cm distance from the 

sample. After the water dispersing, the PL spectrum was measured, and this procedure was repeated 3 times. 

The changes in emission relative efficiency and PL position with increased humidity are shown in Figure 5.  

 

Figure 5 (a) Sketch of PNCs samples. (b) PL efficiency (red circles) and peak (green squares) change with 

increased humidity 

As it can be seen from Figure 5 the NSM as a host matrix for PNCs preserved the optical properties  

of g-PNCs during the increased humidity. However, there was a critical value of humidity reaching which the 

PL efficiency decreased almost twice. Next, we examined the optical properties of g-PNCs in NSM after dipping 

the sample into the distilled water. The PL signal disappeared after such a treatment. 

4. CONCLUSION 

The use of a nanoporous glass matrix allowed obtaining the samples with blue, green, and red perovskite NCs 

possessing reproducible optical characteristics that are almost similar to that of colloidal solution. Such a matrix 

also may prevent the fast degradation of nanocrystals both at the storage in ambient and under UV-light 

exposure and/or increased humidity. Thus, the nanoporous inert solid matrix is a perspective candidate for its 

implementation as a host matrix for perovskite nanocrystals for photovoltaic and optoelectronic devices with 

improved performance. 
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