STOICHIOMETRY ISSUE OF IRON(III) OXIDE NANOMATERIALS BY MÖSSBAUER SPECTROSCOPY Jana HAVLÁKOVÁ, Jiří TUČEK, Radek ZBOŘIL Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacký University Olomouc, Czech Republic, EU jana.havlakova@upol.cz ## **Abstract** Iron oxides, especially the Fe₃O₄ and γ -Fe₂O₃ phases, play a significant role in potential applications of nanomaterials due to their suitable features such as biocompatibility, magnetic and optoelectronic properties. Moreover, it is convenient to use Fe₃O₄ for some applications, such as Li-ion batteries, because of its combined valence states of iron. Therefore, it is highly desired to distinguish the two, otherwise similar, iron oxide phases and to evaluate the degree of Fe₃O₄ stoichiometry. Genuinely, a proper characterization of these compounds can be problematic due to their similar structures and the common occurrence of non-stoichiometric iron oxide forms and their mixtures in the nanosystems. In this respect, ⁵⁷Fe Mössbauer spectroscopy is regarded as a powerful tool for the identification of different forms of iron oxides as well as for the distinguishing between core-shell structures and mixtures. The present contribution is focused on theoretical ⁵⁷Fe Mössbauer spectra of Fe₃O₄, γ -Fe₂O₃ and their different degrees of stoichiometry, with regards to the correct evaluation of the spectra. ⁵⁷Fe Mössbauer spectra of two distinct levels of non-stoichiometric γ -Fe₂O₃ and Fe₃O₄ were modelled and discussed. Furthermore, theoretical examples of ⁵⁷Fe Mössbauer spectra of Fe₃O₄/ γ -Fe₂O₃ mixture of 1/1 particle ratio and a core-shell structure, where Fe₃O₄ core takes up 75 % of the particle's volume, are presented. **Keywords:** γ-Fe₂O₃, Fe₃O₄, stoichiometry, mixtures, ⁵⁷Fe Mössbauer spectroscopy # 1. INTRODUCTION Iron oxides are considered as intriguing nanomaterials due to their importance in fundamental research as well as their convenient physicochemical properties such as nontoxicity, biocompatibility, outstanding magnetic, electronic and optoelectronic features together with relatively low-cost production possibilities, that offer a wide application potential [1-4]. They are frequently classified into two main groups - hydrated (i.e., hydroxides and oxide-hydroxides) and non-hydrated phases; in non-hydrated forms, iron ions are present in divalent (FeO), trivalent (Fe₂O₃) or both states (Fe₃O₄). Additionally, ferric oxide exhibits polymorphism; five crystalline (α -Fe₂O₃, β -Fe₂O₃, γ -Fe₂O₃, ϵ -Fe₂O₃, and ζ -Fe₂O₃) structures and amorphous Fe₂O₃ are known to date, from which Fe₃O₄ (mineralogically known as magnetite) and γ -Fe₂O₃ (mineralogically known as maghemite) are the two leading phases regarding applications [4,5]. When the particle size decreases, it generally becomes difficult to distinguish between Fe $_3O_4$ and $_7Fe_2O_3$, because of the presence of their mixtures and nonstoichiometric structures [6]. Moreover, the degree of stoichiometry can affect particle's physical and chemical properties such as reduction potential, conductivity, coercivity and saturation magnetization, etc. [3]. For some applications, e.g., in lithium-ion batteries, it is crucial to use materials with mixed valence states, and therefore to know and evaluate the degree of their stoichiometry. These factors could raise an issue - how to sufficiently characterize these oxides and their stoichiometry? The solution can be to employ $_57Fe$ Mössbauer spectroscopy; a powerful tool which can provide the information about the present phases as well as the degree of their stoichiometry, i.e., the quantification of $_57Fe$ ratio. In the present contribution, we focus on theoretical simulation of nanoparticulate assembly composed of nonstoichiometric Fe_3O_4 , γ - Fe_2O_3 , Fe_3O_4/γ - Fe_2O_3 mixture and a core-shell structure. Furthermore, we predict their Mössbauer spectral features which can be related to the experimental data of nanosystems with particle size not smaller than ~10 nm (below such threshold size limit, ultrafine nanoparticles adopt amorphous nature). The ^{57}Fe Mössbauer spectra were simulated with the help of *MossWinn* programme with the input data from our vast knowledge on iron oxide nanoparticle systems [1,7]. The only variables in modelling of the spectra involved the degree of stoichiometry and the phase volume ratio for mixture and core-shell structure while the rest of the parameters (e.g., particle size distribution, morphology, temperature fluctuations, etc.) were not considered. Therefore, we accept possible slight differences between theoretical spectra modelled here and those experimentally observed. ## 2. y-Fe₂O₃, Fe₃O₄ AND THE EVALUATION OF THEIR STOICHIOMETRY The two phases of non-hydrated iron oxide, γ -Fe₂O₃ and Fe₃O₄, are not trivial to distinguish as mentioned earlier, which is due to their nearly identical crystal structures [8]. γ -Fe₂O₃ has a cubic crystal structure of an inverse spinel with a lattice parameter a = 8.35 Å and two non-equivalent cation positions. Tetrahedral (A) sites are occupied solely by Fe³⁺ ions and octahedral (B) sites are divided between ferric ions and vacancies. Ferric ions occupy A- and B-sites in stoichiometric γ -Fe₂O₃ in the ratio of 1/1.67 and its formula can be written as $(Fe^{3+})^A(Fe^{3+}_{5/3}\square_{1/3})^BO_3$, where the symbol \square means vacancies [9-11]. The space group of γ -Fe₂O₃ is $Fd\overline{3}m$ if the vacancies are distributed over B-sites randomly, P4₁32 with partially ordered vacancies and tetragonal P4₃2₁2 when the vacancies are fully ordered [11]. Magnetic moments of ferric ions in A- and B-sites are not equal and are in antiparallel alignment with respect to each other, therefore γ -Fe₂O₃ is a collinear ferrimagnet. Additionally, the experimental measurement of the Curie temperature is not possible due to the transformation to thermodynamically more stable α -Fe₂O₃ (hematite), in nanomaterials possibly via a rare phase ϵ -Fe₂O₃. Fe₃O₄ has a cubic crystal structure of an inverse spinel as well as γ-Fe₂O₃ but the lattice parameter *a* is slightly increased, i.e., a = 8.39 Å. Stoichiometric Fe₃O₄ has tetrahedral (A) sites and octahedral (B) sites occupied in the ratio of 1/2 since the B-sites are split between both Fe²⁺ and Fe³⁺ ions equally [3,8]. Nonetheless, Fe₃O₄ often exists in non-stoichiometric form due to oxidization, which causes formation of vacancies and therefore shifting of the A/B ratio towards γ-Fe₂O₃. Its formula can be therefore written as Fe_{3-δ}O₄, where the degree of stoichiometry δ can vary from 0 to 1/3, while zero value represents stoichiometric Fe₃O₄ and $\delta = 0.33$ implies γ-Fe₂O₃ [2]. Moreover, if we account for the distribution of vacancies and their ratio to Fe²⁺ and Fe³⁺ ions, then the structural non-stoichiometric formula can be written as $(Fe^{3+})^A (Fe^{2+}_{1-2\delta}Fe^{3+}_{1+2\delta}\Box_{\delta})^B O_4$, where the symbol \Box stands for vacancies [2,3]. Fe₃O₄ is a collinear ferrimagnet as well as γ-Fe₂O₃ with the Curie temperature of ~850 K. At room temperature, Fe₃O₄ exhibits a conductive behaviour due to the fast electron hopping between octahedral cations. As the temperature decreases to ~124 K, Fe₃O₄ undergoes the Verwey transition; a structural distortion from cubic to orthorhombic symmetry accompanied with a rapid drop in conductivity [8,12-14]. Crystal structures of stoichiometric γ -Fe₂O₃ and Fe₃O₄ are shown in **Figure 1a,b** together with their typical powder X-ray diffraction (XRD) patterns (see **Figure 1c,d**) and typical ⁵⁷Fe Mössbauer spectra, with isomer shift values referred to δ -Fe at room temperature and zero applied field (see **Figure 1e,f**), while their Mössbauer hyperfine parameters are listed in **Table 1**. The ⁵⁷Fe Mössbauer spectrum of stoichiometric γ -Fe₂O₃ consists of two spectral components corresponding to ferric ions in the A-sites and in the B-sites. The stoichiometric form of Fe₃O₄ is in Mössbauer spectrum manifested by two spectral components, one originating from Fe³⁺ ions in the A-positions and the other from Fe²⁺ and Fe³⁺ ions in the B-positions with effective valence state of 2.5+ due to the fast electron hopping above the Verwey temperature [3,12]. **Figure 1** Crystal structures and typical XRD patterns and ⁵⁷Fe Mössbauer spectra of (a, c, e) γ-Fe₂O₃ and (b, d, f) Fe₃O₄, on the right-hand side. In the Mössbauer spectra, the red line is corresponding to the overall fit, the blue line corresponds to ions in the A-sites and the green line refers to ions in the B-sites. Panel (a) is reprinted with permission from [1]. **Table 1** ⁵⁷Fe Mössbauer hyperfine parameters typical for ideally stoichiometric forms of γ-Fe₂O₃ and Fe₃O₄, where δ_{Fe} is the isomer shift, ΔE_{Q} is the quadrupole splitting, B_{hf} is the hyperfine magnetic field and RA is the relative spectral area. The isomer shift values are referred to metallic δ-Fe at room temperature | phase | δ _{Fe} (mm/s) | ΔE _Q (mm/s) | B _{hf} (T) | RA (%) | Assignment | |----------------------------------|------------------------|------------------------|---------------------|--------|---------------------------| | γ-Fe ₂ O ₃ | 0.25 | 0.00 | 50.0 | 37.5 | Fe ³⁺ A-site | | | 0.37 | 0.00 | 50.5 | 62.5 | Fe ³⁺ B-site | | Fe ₃ O ₄ | 0.25 | 0.00 | 48.9 | 33.3 | Fe ³⁺ A-site | | | 0.65 | 0.00 | 45.7 | 66.7 | Fe ^{2.5+} B-site | Additionally, in the non-stoichiometric Fe_{3- δ}O₄, Fe³⁺ ions also occur as isolated in the B-positions, which are not involved in the electron hopping effect and are manifested in the Mössbauer spectra by the presence of the additional third sextet. The degree of stoichiometry of Fe_{3- δ}O₄ can be described also by the ratio x_m of structural amount of Fe²⁺ and Fe³⁺ ions, given by the following relationship stated by Gorski and Scherer [3]: $$x_{\rm m} = \frac{Fe^{2+}}{Fe^{3+}} = \frac{1 - 3\delta_{\rm m}}{2 + 2\delta_{\rm m}}.$$ (1) The stoichiometry x_m can vary from 1/2 for stoichiometric Fe₃O₄ to zero corresponding to completely oxidized form (i.e., γ -Fe₂O₃). The value of x_m is obtained from ⁵⁷Fe Mössbauer spectra as a ratio of relative areas of spectral components corresponding to Fe²⁺ and Fe³⁺ ions by the following equation [3]: $$x_{\rm m} = \frac{{\rm Fe}^{2+}}{{\rm Fe}^{3+}} = \frac{\frac{1}{2} {\rm Fe}^{2.5+}}{\frac{1}{2} {\rm Fe}^{2.5+} + {\rm ^{A+B}} {\rm Fe}^{3+}}.$$ (2) As the degree of stoichiometry shifts towards γ -Fe₂O₃, the amount of Fe²⁺ decreases; at some point, there is not enough Fe²⁺ ions to be detected by ⁵⁷Fe Mössbauer spectroscopy, therefore the Fe^{2.5+} sextet is not resolved in the spectrum and x_m cannot be evaluated. Nevertheless, these assemblies are rather closer to the structure of γ -Fe₂O₃ and their degree of stoichiometry can be estimated as the occupancy ratio of B/A sites, since we know that for stoichiometric γ -Fe₂O₃, the spectral ratio is equal to 1.67 [9]. We addressed this issue by modelling 57 Fe Mössbauer spectra of two systems with different degrees of stoichiometry; one closer to the Fe₃O₄ and the other one closer to γ -Fe₂O₃, as can be seen in **Figure 2**. The theoretical 57 Fe Mössbauer spectrum of non-stoichiometric Fe₃O₄ consists of three spectral components, corresponding to Fe³⁺ in A-sites, isolated Fe³⁺ in B-positions and Fe^{2.5+} in B-sites. The spectrum of the non-stoichiometric γ -Fe₂O₃ consists of two spectral components corresponding to Fe³⁺ ions in A-sites and Fe³⁺ ions in B-sites. Their predicted hyperfine parameters are listed in **Table 2**. We estimated the degree of stoichiometry according to the B/A relative spectral areas ratio as δ_1 = 0.14 and δ_2 = 0.26. On the other hand, when we follow equation (2) and then equation (1) to obtain the value of δ_m (this procedure can be employed only for the non-stoichiometric Fe₃O₄), then δ_{m1} = 0.22. The vast difference in values δ_1 and δ_{m1} can be caused by the applicability of equations (1) and (2) to structures close to stoichiometric Fe₃O₄. This brings us to several issues and questions: (i) What is the threshold value of δ (or ϵ_m) when the structure cannot be considered Fe₃O₄-like and hence becomes non-stoichiometric ϵ_1 -Fe₂O₃ illustrated by the grey area in **Figure 2**?; (ii) How to correctly evaluate the degree of stoichiometry in the close proximity of this threshold value? **Figure 2** Theoretical ⁵⁷Fe Mössbauer spectra of Fe₃O₄ particles with different degrees of stoichiometry δ ; the blue lines correspond to Fe³⁺ in A-sites, the green lines refer to Fe³⁺ isolated in B-sites, the pink line corresponds to Fe^{2.5+} in B-sites and the red lines represent the overall fits The second modelled situation is the difference between Mössbauer spectra of Fe₃O₄/ γ -Fe₂O₃ mixtures and core-shell assemblies, which is shown in **Figure 2**. The theoretical Mössbauer spectrum of a 1/1 mixture consists of four spectral components of which two are assigned to Fe₃O₄ particles, hence Fe³⁺ ions in A-sites and Fe^{2.5+} ions in B-sites. The other two components refer to Fe³⁺ in A-sites and Fe³⁺ in B-sites in γ -Fe₂O₃. The theoretical spectrum of a core-shell assembly, on the other hand, consists of three spectral components. The first and second component is assigned to the Fe₃O₄ core and its Fe³⁺ ions in A-sites and Fe^{2.5+} ions in B-sites, respectively. Since the core takes-up 75 % of the particle's volume, the γ -Fe₂O₃ surface layer is extremely thin, hence the spectral components referring to γ -Fe₂O₃ cannot be resolved separately and are seen as one component. **Figure 3** Theoretical ⁵⁷Fe Mössbauer spectra of (a) a 1/1 mixture Fe₃O₄/ γ-Fe₂O₃; (b) core-shell particles Fe₃O₄/ γ-Fe₂O₃ of 3/1 ratio, where the red lines correspond to the overall fit, the blue lines refer to the Fe³⁺ ions in A-sites, the dark green lines represent Fe^{2.5+} in B-sites, the light green line refers to isolated Fe³⁺ in B-sites and the blue line represents the sum of Fe³⁺ in A- and B-sites. **Table 2** ⁵⁷Fe Mössbauer hyperfine parameters modelled for non-stoichiometric forms of γ-Fe₂O₃, Fe₃O₄, γ-Fe₂O₃/ Fe₃O₄ and of a core-shell Fe₃O₄/γ-Fe₂O₃ structure, where δ_{Fe} is the isomer shift, ΔE_Q is the quadrupole splitting, B_{hf} is the hyperfine magnetic field and RA is the relative spectral area. The isomer shift values are referred to metallic δ-Fe at room temperature. | phase | δ_{Fe} (mm/s) | ΔE_Q (mm/s) | $B_{hf}(T)$ | RA (%) | Assignment | |------------------------------------------------------------------------------|-----------------------------|---------------------|-------------|--------|------------------------------------| | | 0.25 | 0.00 | 50.0 | 35 | Fe ³⁺ A-site | | non-stoichiometric Fe ₃ O ₄ | 0.37 | 0.00 | 50.0 | 40 | Fe ³⁺ B-site | | | 0.50 | 0.00 | 47.2 | 25 | Fe ^{2.5+} B-site | | | 0.25 | 0.00 | 48.9 | 33.3 | Fe ³⁺ A-site | | non-stoichiometric γ-Fe ₂ O ₃ | 0.65 | 0.00 | 45.7 | 66.7 | Fe ³⁺ B-site | | | 0.25 | 0.00 | 49 | 17.5 | Fe ³⁺ A-site | | | 0.80 | 0.00 | 45 | 34.5 | Fe ^{2.5+} B-site | | Fe ₃ O ₄ /γ-Fe ₂ O ₃ 1/1 mixture | 0.25 | 0.00 | 51 | 20 | Fe ³⁺ A-site | | | 0.37 | 0.00 | 50 | 28 | Fe ³⁺ B-site | | | 0.25 | 0.00 | 49 | 25 | Fe ³⁺ A-site | | Fe ₃ O ₄ /γ-Fe ₂ O ₃ core-shell | 0.80 | 0.00 | 45 | 50 | Fe ^{2.5+} B-site | | | 0.31 | 0.00 | 48 | 25 | Fe ³⁺ A-sites + B-sites | # 3. CONCLUSION In the present contribution, we theoretically addressed the topic of distinguishing between non-stoichiometric forms of γ -Fe₂O₃, Fe₃O₄ and between Fe₃O₄/ γ -Fe₂O₃ mixtures and core-shell assemblies by ⁵⁷Fe Mössbauer spectroscopy. Some approaches to determine and quantify the degree of $Fe_{3-\delta}O_4$ stoichiometry have been proposed. Nevertheless, non-stoichiometric $Fe_{3-\delta}O_4$ materials can exist in a wide range of stoichiometry degrees δ varying from zero (Fe_3O_4) to 1/3 (γ - Fe_2O_3), when, in some cases, the procedures of stoichiometry determination, suggested in the literature so far, fail to some extent in terms of identifying the correct phase nature. In other words, here we highlight a peculiar situation frequently occurring in experimental samples, when the non-stoichiometry of the two iron oxide forms is in between or close to the middle δ value and it is hard to state if this phase carries the structural features of Fe_3O_4 or γ - Fe_2O_3 . Therefore, it is an issue of further research to find the threshold value of stoichiometry degree δ (or x_m) between the two structures Fe_3O_4 and γ - Fe_2O_3 . A possible solution is viewed in employing ^{57}Fe Mössbauer spectroscopy with an applied magnetic field, which would provide better resolution of individual spectral components and, hence, more precise determination of the stoichiometry parameter. Such information could then be related with data from XRD technique in terms of changing the lattice parameters values with vacancy ordering upon oxidation from Fe_3O_4 to γ - Fe_2O_3 as frequently observed in the literature [1]. #### **ACKNOWLEDGEMENTS** The authors gratefully acknowledge support from the Ministry of Education, Youth and Sports of the Czech Republic under project No. LO1305. ### **REFERENCES** - [1] TUČEK, J., MACHALA, L., FRYDRYCH, J., PECHOUŠEK, J. AND ZBOŘIL, R. Mössbauer Spectroscopy in Study of Nanocrystalline Iron Oxides from Thermal Processes. SHARMA, V.K., KLINGELHOEFER, G. and NISHIDA, T. Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology. Hoboken: JWS, 2013, Part V: Iron Oxides, chapter 18, pp. 349-392. - [2] VANDENBERGHE, R.E., BARRERO, C.A., DA COSTA, G.M., VAN SAN, E. and DE GRAVE, E. Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art. *Hyperfine Interact.*, 2000. vol. 126, iss. 1-4, pp. 247-259. - [3] GORSKI, C.A. and SCHERER, M.M. Determination of nanoparticulate magnetite stoichiometry by Mössbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review. *Am. Mineral.* 2010. vol. 95, iss. 7, pp. 1017-1026. - [4] JOHNSON, C.E., JOHNSON, J.A., HAH, H.Y., COLE, M., GRAY, S., KOLESNICHENKO, V., KUCHERYAVY and P., GOLOVERDA, G. Mössbauer studies of stoichiometry of Fe₃O₄: characterization of nanoparticles for biomedical applications. *Hyperfine Interact.* [online] 2016. vol. 237, no. 27, pp. 1-10 [viewed 2018-04-26]. Available from: DOI: https://doi.org/10.1007/s10751-016-1277-6. - [5] TUCEK, J., MACHALA, L., ONO, S., NAMAI, A., ZOSHIKIYO, M., IMOTO, K., TOKORO, H., OHKOSHI, S. and ZBORIL, R. Zeta-Fe₂O₃ A new stable polymorph in iron(III) oxide family. *Sci. Rep.* [online] vol. 5, no. 15091, pp. 1-11 [viewed 2015-12-09]. Available from: DOI: 10.1038/srep15091. - [6] SINGH, L.H., PATI, S.S., GUIMARAES, E.M., RODRIGUES, P.A.M., OLIVEIRA, A.C. and GARG, V.K. Synthesis, structure, morphology and stoichiometry characterization of cluster and nano magnetite. *Mater. Chem. Phys.* 2016. vol. 178, pp. 182-189. - [7] KLENCSAR, Z., KUZMANN. E. and VERTES, A. User-friendly software for Mössbauer spectrum analysis. *J. Radioanal. Nucl. Chem.* 1996. vol. 210, iss. 1, pp. 105-118. - [8] CORNELL, R.M., SCHWERMANN, U. The Iron Oxides. 2nd ed. Weinheim: Wiley, 2000, p. 703 - [9] ZBORIL, R., MASHLAN, M. and PETRIDIS, D. Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. *Chem. Mater.* 2002. vol. 14, iss. 3, pp. 969-982 - [10] DA COSTA, G.M., DEGRAVE, E., DEBAKKER, P.M.A. and VANDENBERGHE, R.E. Influence of nonstoichiometry and the presence of maghemite on the Mössbauer spectrum of magnetite. *Clays Clay Miner.* 1995. vol. 43, iss. 6, pp. 656-668 - [11] FOCK. J., BOGART, L.K., GONZALEZ-ALONSO, D., ESPESO, J.I., HANSEN, M.F., VARON, M., FRANDSEN, C. and PANKHURST, Q.A. On the 'centre of gravity' method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via Fe-57 Mössbauer spectroscopy. *J. Phys. D.* [online] 2017. vol. 50, iss. 26, pp. 1-17 [viewed 2018-04-26]. Available from: DOI: 10.1088/1361-6463/aa73fa. - [12] DANIELS, J.M., ROSENCWAIG, A. Mössbauer spectroscopy of stoichiometric and non-stoichiometric magnetite. *J. Phys. Chem. Solids.* 1969. vol. 30, iss. 6, pp. 1561-1571. - [13] HAGGSTROM, L., ANNERSTEN, H., ERICSSON, T., WAPPLING, R., KARNER, W. and BJARMAN, S. Magnetic dipolar and electric quadrupolar effects on Mössbauer spectra of magnetite above Verwey transition. *Hyperfine Interact.* 1978. vol. 5, iss. 3, pp. 201-214. - [14] HONIG, J.M. Analysis of the Verwey transition in magnetite. J. Alloy. Compd. 1995. vol. 229, iss. 1, pp. 24-39.