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Abstract 

Classical “wet“ chemistry methods can produce polymers with well-defined molecular structure, but many types 
of polymers are difficult to prepare with significant degree of crosslinking without residues of the crosslinking 

agent. On the other hand, plasma polymers usually have very high degree of crosslinking but nearly random 
molecular structure. 

Plasma assisted vapour thermal deposition combines both methods. Classical polymers are heated in a 
crucible at low pressure and the released oligomeric fragments of the polymer chain are repolymerized in a 
glow discharge into a thin film. The number of well-preserved monomeric units between the crosslinks can be 

tuned e.g. from units to tens. 

Poly-lactic acid (PLA) belongs to a special class of biodegradable polymeric materials. In this work, plasma 

assisted vapour thermal deposition was utilized to prepare PLA plasma polymers. Molar weights and chemical 
composition of the “precursor” polymer and of the thin films have been characterized. As the measure of 

degradability, behaviour of the polymers during hydrolysis has been studied using spectroscopic ellipsometry 
and liquid chromatography. Possibility to prepare plasma polymer films with controlled degradability was 

demonstrated. 
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1. INTRODUCTION 

Degradable and biodegradable polymers (such as polyethylene oxide or polylactic acid) have important 

applications in the biomedical field due to their unique biocompatibility, biodegradability and mechanical 
properties [1-5]. They can be also synthesized in many modifications for packaging, food industry or medicine 

[6-10]. 

Typically PLA is synthetized by polycondensation of lactic acid [11], but other synthetic methods have been 

also studied [7-9]. Methods based on low temperature plasma were found to be effective for fabrication of thin 
plasma polymer coatings [12-20].  

Using classical “wet chemistry” methods, it is often difficult to prepare biodegradable polymers with high degree 
of crosslinking without residues of the crosslinking agents. Plasma-based methods can produce very highly 

crosslinked materials easily, but retention of the molecular structure of the monomer is usually low.  

Plasma assisted vacuum thermal deposition is a technique that uses oligomers released during low pressure 

thermal decomposition of a source polymer (“precursor”) [21-25] as “monomers” for plasma polymerization. It 
is possible to produce plasma polymers that bridge the limits of classical polymers and plasma polymers 

[26, 27]. In this way various properties of the films can be controlled [28]. 
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2. EXPERIMENTAL 

2.1. Deposition of plasma polymer 

The general setup of the experiment was described e.g. in [26]. The RF (13.56 MHz) electrode covered with a 
glass target was 4 cm below a heated crucible with solid polymer precursor (“source” polymer). The substrates 
(single-side polished silicon wafers, gold-coated silicon, aluminium foil, glass slides) were placed 10 cm above 
the crucible. During the experiment, the crucible was heated approximately linearly from 25°C to 330°C at the 
rate 25°C/min. As a source polymer for the process, PLA prepared by polycondensation according to [6] was 
used. To ignite the plasma, argon under the pressure of 4 Pa (flow rate of 8 sccm) was used. The deposition 
rate was monitored by quartz-crystal microbalance sensor. 

2.2. Determination of film composition 

Molecular weight distributions of PLA prior to and after deposition were analyzed by gel permeation 
chromatography (GPC) on an HT-GPC 220 system (Agilent). Samples on aluminium foil were dissolved in 
THF (2 mg.ml-1) overnight. Separation and detection took place on a series of mixed columns (1×B, 1×D, 1×E) 
(300×7.8 mm, Polymer Laboratories). Analyses were carried out at 40°C in THF, 1.0 ml.min-1 flow rate and a 
loading volume of 100 μL. The infrared spectra of the films on gold-precoated substrates were obtained by 
FTIR-ATR (Nicolet iS5). 

2.3. Characterization of hydrolysis 

The physical thickness of the film during hydrolysis has been characterized in situ using spectroscopic 
ellipsometry (Woollam M-2000DI). The hydrolysis experiments were carried out on samples on the glass slides 
at 37°C in 15 ml ammonium bicarbonate buffer (0.01 mol.l-1, pH 7). 0.5 ml aliquots were taken at regular 
intervals, centrifuged and analyzed for lactic acid by LC MS (Agilent 6530 Accurate Mass) coupled to an HPLC 
unit (Agilent 1260 Infinity). 

 

Figure 1 GPC molar weight of the precursor PLA polymer and thin films prepared without plasma and at 

plasma power 5 W (note: relative amount of fragments with Mr<2000 g.mol-1 can be overestimated) 
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3. RESULTS AND DISCUSSION 

3.1. Preparation and composition of the films 

During heating of the crucible, the deposition could be observed after attaining approximately 150°C. Most of 
the deposition took part at the temperature over 200°C and the deposition rate increased approximately 

exponentially with temperature. 

The thickness of the as-deposited films was 500-3000 nm. Molar weight of the precursor polymer was 

Mn=6900 g.mol-1 (~80 monomeric units). The molar mass distribution of the plasma polymer is significantly 
broader (Figure 1). There are lower molar weight fragments (Mr=100-3000 g.mol-1) present as well as the 

molecules with molar mass higher than the original polymer (Mr=10 000-100 000 g.mol-1). This can be 
attributed to the fragmentation of the precursor polymer and re-polymerization of these fragments that 

proceeds to some extent even without the plasma. The ratio of the low molar to high molar fragments amount 
shifts slightly when the material is plasma-polymerized. 
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Figure 2 FTIR-ATR spectra of the precursor PLA polymer and thin films prepared without plasma and at 

plasma power 5 W 

The FTIR ATR spectra (Figure 2) of the precursor and of the thin films are very similar, showing good retention 

of the chemical structure of polylactic acid.  

However, slight broadening of the absorption peaks in the films in comparison to the precursor polymer marks 
some fragmentation and randomization of the structure of the thin films. That is compatible with findings of 
GPC. The structure of PLA is present in the peaks of C=O stretching (~1750 cm-1) and C-O-C stretching 
(1090 cm-1, 1185 cm-1, 1215 cm-1) vibrations. Significant increase of intensity of the peak at 1270 cm-1 can be 
attributed to coupled CH and C-O-C vibrations [29]. With the increase of intensity absorptions that can be 
assigned to CHx containing groups (1045 cm-1, 1130 cm-1, 1380 cm-1, 1450 cm-1) it is another sign of 
fragmentation and crosslinking of the polymeric chain.  
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Figure 3 Swelling behaviour of the films in water observed by in-situ by spectroscopic ellipsometry for films 

prepared without plasma and at plasma power 5 W  
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Figure 4 Lactic acid release from hydrolyzed PLA plasma polymer films determined by LC-MS for films 
prepared without plasma and at plasma power 5 W 

3.2. Properties of the films during degradation by hydrolysis 

The in-situ monitoring of thin films immersion in water using spectroscopic ellipsometry (Figure 3) revealed a 
marked difference between films prepared without plasma and with plasma power 5 W. While they differ only 
mildly in composition, the difference in the swelling behaviour was much more pronounced. The films prepared 
without plasma have swollen to more than three times of the initial thickness in less than 10 minutes without 
clear sign of slowing of the swelling and dissolving. Films prepared at plasma power 5 W swelled in the same 
time only by about 60%.  
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When the hydrolysis of the films was monitored (Figure 4), it was found that the lactic acid release was higher 
during the first 200 hours. The lactic acid release was faster for the films deposited without plasma discharge, 
showing faster degradation by hydrolysis. 

4. CONCLUSION 

PLA-like plasma polymer films were prepared using plasma-assisted vacuum thermal deposition. These films 
well correspond in structure and chemical composition to the original PLA polymer. The properties of the films 
in terms of (bio) degradability can be varied by the deposition conditions. Even mild plasma polymerization of 
the thermally released fragments of the source polymer significantly slow down the degradation of the resulting 
films. 
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