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Abstract  

Nanocrystal solids with long range order is a new class of artificial materials, which physical properties are 

depend on the features of individual nanocrystals as well as their mutual interaction. In this work we investigate 

the energy band structure in a two-dimensional ordered array of semiconductor nanocrystals with degenerate 

valence band and finite value of spin-orbit splitting. The Coulomb interaction between nanocrystals splits 

energy of quantizied states of individual nanocrystals into excitonic energy bands. By changing the geometry 

of lattice and material parameters of individual nanocrystal, one can control the electromagnetic properties of 

these artificial materials.  
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1. INTRODUCTION  

Unlike atomic and molecular crystals whose lattice geometry and composition are immutable and determined 

by nature, nanocrystal solids, also known as quantum dot supercrystals allows to design their ”crystalline” 

structure [1-3]. These artificial materials represent a new type of condensed matter systems with properties 

depend both on the individual features of building blocks and on many-body effects of their mutual interactions. 

To understand the properties of such systems is required to development of new theoretical approaches that 

would successfully combine methods of solid state physics as well as physics of mesoscopic systems. 

In our previous work [4] we calculated energy spectra of excitonic bands in two-dimensional NC solids with 

different types of Bravais lattices. However, the simple model we used to describe an exciton structure in NCs 

does not take into account their materials parameters in calculations of Coulomb interactions. This paper aims 

to fill this gap. For this purpose we consider the interaction between NCs with degenerate valence band 

structure and finite value of spin-orbit splitting. We obtained the analytical expressions for matrix elements of 

Coulomb interaction between elementary interactions in semiconductor NCs. Using these expressions we 

calculate the excitonic energy bands corresponding to the simple two-dimensional lattices. 

2. NONRADIATIVE EXCITON TRANSFER 

Let us discuss the spherically symmetric NCs made of direct band gap, AIIBVI or AIIIBIV semiconductors with 

cubic lattice structure. We assume that the radius of considered NCs is much smaller than the exciton Bohr 

radius in bulk material. That allows us to use strong confinement approximation and consider electron-hole 

mutual interaction perturbatively. 

The confined states of electron are described by the following set of quantum numbers:� 
 ��� � �� � �� � ���, 
where index �� labels different states with the same symmetry in order of increasing energy, �� is an electron 

orbital angular momentum, and �� its projection, �� 
 �� ! denotes spin projection. Each state are 

degenerate with respect to the spin projection as well as the projection of orbital angular momentum. The 

electron wave function in the envelope function approximation can be written as 

"#$%& 
 ��'�'$�&(�')'$*� +&,	� ��-�          (1) 
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where ,	� ��- is the Bloch wave function at the bottom of s-type conduction band, ��'�'$�& and (�')'$*� +& are 

radial and angular parts of the electron envelope function, respectively. 

As opposed to electron states, the set of quantum numbers for confined hole states is . 
 ��/� 0� 0�� 1�, where 

�/ labels the different states with the same symmetry in order of increasing energy, 0 
 � !� 2 !� 3 is an 

eigenvalue of total angular momentum, and 0� its projection, 1 
 ���is parity of the state, since the holes 

Hamiltonian preserves the states symmetry with respect to inversion of coordinates. The total angular 

momentum 0 is the sum of valence band Bloch function angular momentum 4 and orbital angular momentum 

of the envelop function 5: 0� 
 �5� 6 �4. Each of these states are degenerate with respect to the projection of 

total angular momentum 0�. In the envelope function approximation the wave functions of hole states represent 

as the linear combination of the form 

"7$%& 
 � ��89:�$�&� ;9�<=>:=?:�:=<<=::=�>:9�: (9�<=>:=$*� +&,4� 4�-�      (2) 

where ,4� 4�- is the valence band Bloch function at the top of p-type valence band, ;9�<=>:=?:�:=<<=  is the Clebsch-

Gordan coefficient. The radial parts ��89:�$�& with the different pairs $5� 4& correspond to the branches of the 

bulk valence band: $4� 
 �2 !� 5� 
 �0� 6 1 !& for light-holes, $4� 
 �2 !� 5� 
 �0� @ 21 !& for heavy-holes, and 

$4� 
 �� !� 5� 
 �0� 6 1 !& for split-off holes, respectively. 

The interaction between neutral NCs which are located in different sites of NC solid lattice describes by the 

screened Coulomb potential, 

ABC 
 �D
E,%BCF%B>%C, ,           (3) 

where B�and C�are the position vectors of NCs, G�is the elementary charge, %BC is the vector directed from the 

center of one NC to another, %B and %C are the radius-vectors of electrons in corresponding NCs, H�is the 

effective permittivity, which in general is a function I$HB� �HC� HJ�&of high-frequencies permittivity’s of NCs HB 

and �HC, and environment HJ [5]. This interaction results in excitation transfer from one NC to another. In the 

initial state there is an electron in the conduction band state � in NC located at B and in the valence band state 

. in NC located at C. In the final state there is an electron in conduction band state �K in C and in valence 

band state .K in B, respectively. The appropriate matrix element has the following form 

�BC 
 �D
E LM%BM%C NOPQ $%B&NRPQ $%C&NR$%B&NO$%C&

,%BC6%B@%C, ,         (4) 

We assume that NCs are sufficiently separated and there is no overlap between their wave functions. Thus, 

we do not include the exchange interaction term in Eq. (4). 

In order to separate the variables relating to the different NCs in Eq. (4), we use the following Fourier integral 

representation: 
�

,%BCF%B>%C, 
 �
�SD T �U

VD GWU$%BCF%B>%C&
          (5) 

then 

�BC 
 �
�SD

�D
E T �U

VD �X#7Y$B&$U&X#Y7$C&Q$U&GWU%BC  ,        (6) 

where 

X#7$Z&$U& 
 TM%Z"#$%Z&"7$%Z&GWU%Z.         (7) 

The envelope function approximation allows us to separate the integration of Bloch and envelope functions 

in Eq. (7), then we obtain 

X#7$Z&$U& 
 [ � \U ] ^::=�=
$Z& _9�:�:= 9̀::=

$Z& $U&         (8) 
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where ^::=�=
$Z& 
 a44bc%Zc	�bd is the bulk interband matrix element of the radius-vector, and 

9̀::=
$Z& $U& 
 TM%Z GWU%Z �e#$%Z&e7$%Z&�         (9) 

e#$%Z&�fgh�e7$%Z& are the envelope functions of electron and states, respectively. Since the confinement 

potential of considering NCs has the spherical symmetry it is convenient to use the representation of plane 

waves by the spherical harmonics. After evaluating the angular part Eq. (9) depends only on absolute value of 

q and has the following form 

9̀::=
$Z& $i& 
 ;9�<=>:=?:�:=<<= ��9F�

��'F�� jk4k$Z&$i&lk�m         (10) 

where  

jk 
 $[&k$!n 6 �&;�'m?km9m ;�')'?km
9�<=>:=           (11) 

and 

4k$Z&$i& 
 T M�opq
m ��'�'$�o&��89:�$�o&rk$i�o&�        (12) 

�o is the nanocrystal radius, rk$s& is the spherical Bessel function. The Clebsch-Gordan coefficients in Eq. 

(11) determine the selection rules for multipole interband transtions due to the energy transfer: ,�� @ n, t 5 t
�� 6 n� 5 6 �� 6 n 
 uvug�gwxyuz and �� 
 0� @ 4�. Therefore, a nonzero contribution to Eq. (8) provides by 

terms with 4� 
 0� @��. 

Returning to the Eq. (6) carry out the integration over angular variables, choosing z axis whose direction 

coincides with vector %BC. Eventually we obtain the following expression: 

�BC 
 �D
E%BC{ � |\^:Y:Y=�=

$B& ] ^::=�Y=
$C& _}99P�::P$�& @ 2\~BC ] ^::=�Y=

$C& _\~BC ] ^:Y:Y=�=
$B& _}99P�::P$�& �99P�::P    (13) 

}99P�::P$�& 
 \��_
�>� �

ST Mss�r�$s&l
m 9̀Y:Y:Y=

$B& $s %BC& 9̀::=
$C&Q$s %BC&,      (14) 

where ~BC is the unit vector co-directional with %BC. At first sight expression (13) is similar to well-known 

matrix element of dipole-dipole interactions in atomic and molecular systems [6], except coefficients }99P�::P$�&
that 

include contribution of high-multipole interactions as well as nanocrystals material parameters.  

In the dipole-dipole approximation (5Y 
 �� �fgh�5 
 �K�) the matrix element (13) is given by 

�BC 
 �D
E%BC{ � �9Y:Y

$B&�9:
$C&Q |\^:Y:Y=�=

$B& ] ^::=�Y=
$C& _ @ 2\~BC ] ^::=�Y=

$C& _\~BC ] ^:Y:Y=�=
$B& _�99P�::P ,   (15) 

where 

�9:
$Z& 
 ;9�<=>:=?:�:=<<= T M�o�o�pq

m ��'�'$�o&��89:�$�o&�        (16) 

In contrast to calculations in two-band approximation [7], Eq. (15) allowed transitions between states with 

different quantum numbers �� and �/, and also contains envelope functions overlap integrals (16). It should 

be noted that in this case the effective permittivity � is given by [5, 7] 

H 
 $E��F�E�&D
�E�             (17) 

where H�  is the NCs high-frequency permittivity. In our further calculations we assume that NCs are 

embedded in a wide-gap dielectric matrix, so that we use the infinite walls approximation for quantum 
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confinement potential. Thus, the exact forms of the radial part functions and eigenenergy equation for carriers 

in NCs are chosen in accordance with Ekimov, et al. [8].  

3. ENGINEERING EXCITONIC BANDS 

To demonstrate the possibility of formation excitonic bands let us assume that NC solids forming simple two-

dimensional rectangular lattice. The position of each NC may be denoted by vector B� 
 ���Z� 6����, where Z 

and � are the lattice translation vectors, �� and �� are integers. In this work in accordance with Heitler-London 

approximation we consider only lowest-energy excited states in NCs, and do not take into account the impact 

of high-energy excited states on exciton energy spectrum, therefore the interaction between NCs excitations 

could be described by dipole-dipole mechanism (15). This assumption is valid since the dephasing rate of such 

states is minimal, contributing to the formation of exciton coherent states in NC solids. If the excited state is f-

fold degenerate it corresponds to f or less excitonic energy bands in supercrystal. In organic solids such partial 

or total degeneracy removal is called the Bethe splitting [9]. This effect caused to intermolecular interaction 

and translation symmetry of the crystal, which is lower than in a single molecule. 

In the Heitler-London approximation the energy spectrum of excitons can be found through the diagonalization 

of the resonant interaction matrix L, which elements are given by [9] 

���$�& 
 � �BC��u���[�$B @C&�B�C            (18) 

where � and � denote the degenerate energy states with different sets of quantum numbers, � is the exciton 

wave vector, B and C are lattice translation vectors, and the matrix element �BC�� is given by Eq. (13) in the 

general case. It should be note here that for calculation of matrix elements we need to express the electron’s 

radius-vector %K$sY� �Y� bK&of each NC in the system associated with NC solid lattice through the radius vector 

%$s� �� b& of the same electron in the crystallographic system. Such coordinate transformations can be 

performed by using rotation matrix � whose elements can be defined in different ways, for example, through 

the Euler angles. However, if crystallographic axes of all NCs are oriented identically, the energies of exitonic 

bands do not depend on the elements of rotation matrix�� [4]. As a rule the lowest-energy exciton state in 

colloidal semiconductor NCs is �	� @ �	� � which is eight-fold degenerate excluding electron-hole interactions. 

The energy of excitonic bands has the following form 

��$�& 
 ��� 6 ���$�&            (19) 

where 

� 
 �D
Eo{ � �

���
� c�m�� �c�            (20) 

is the coefficient measured in energy units and depending only on material parameters of NCs, and���$�& is 

the �th eigenvalue of the resonance interaction matrix (18), which depends only on geometry of supercrystal 

lattice,   is the Kane matrix element, and �¡ is the NCs band gap. 

Since the bulk interband matrix elements ^::=�Y=
$¢&

 for the transitions ,2 !�2 !£ ¤ ,	� @� !£ and ,2 !� @2 !£ ¤
,	� � !£ are zeroes, the resonance interaction matrix reduces to 6 × 6 matrix. Furthermore, the operator of NCs 

interaction (3) does not include the components that affect on electrons and holes spins, thus, the matrix 

elements (13) for the states with equal absolute values of exciton full angular momentum projections are 

indistinguishable. Therefore, there are only three excitoncis bands correspond to the unique nonzero 

eigenvalues of hermitian matrix (18). Since the value of interaction matrix element (13) decreases with 

increasing distance as the ,�BC,>�, we can retain in (18) only terms correspond to the interaction with the 

nearest neighbors. Finally, the expressions of excitonic bands energy for the rectangular two-dimensional 

lattice are given by 
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��$�& 
 �¥2 ¦§¨©$n�ª& 6 �
« §¨©¬nª®¯ 

��$�& 
 �¥2 ¦§¨©$n�ª& @ !
« §¨©¬nª®¯ 

��$�& 
 �@ °
� |!§¨©$n�ª& @ �

± §¨©¬nª®�         (21) 

where « 
 ² ª³ 

4. CONCLUSION 

We theoretically investigate the Coulomb interaction between NCs with degenerate valence band and obtained 

the analytical expressions for matrix elements of energy transfer between them. We demonstrate that 

arrangement of semiconductor NCs in two-dimensional lattices results in formation of three excitonic energy 

bands, which properties are depend on material parameters of individual NCs and geometry of lattices. This 

possibility of tuning the properties of such artificial materials makes them interesting to using as building blocks 

in new devices for optoelectronics and photonics. 
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