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Abstract  

To model the quantitative relationship of the nanoparticle toxicity we can use theoretical molecular descriptors 
or physico-chemical characteristics. The former provide an auspicious interpretation of the toxicity 
mechanisms, however their computation may be very demanding, namely in the nanoscale. The latter are on 
the other hand fully observable, yet scarcely available for all the toxicity-assessed particles. Currently, there 
are large initiatives generating data for QNTR, including their toxicity and physico-chemical features. Resulting 
data are naturally very heterogeneous because of multiple subjects involved in the project. In this study, we 
investigate whether the data generated from such large projects are sufficient to induce well-generalizing 
models. We used the data generated by MODENA-COST, consisting of the toxicity measurements and 
physico-chemical characteristics of 192 nanoparticles. We build several machine-learning based models and 
focused on their statistical validity. The internal evaluation of these models (i.e. protocol using the same data 
set, such as cross-validation) suggests quite good validity of these models. Then we employed a rigorous 
validation protocol and external data set of our own measurements related to 10 standardized MeOx 
nanoparticles. Hence, the result were not so optimistic at all. Instead, they seem valid only for a well-defined 
set of experimental conditions. This research is supported by the Czech Ministry of Education, Youth and 
Sports (Grants No. LD 14002 and LO1508). 
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1. INTRODUCTION  

Transferring the QSAR paradigm for nanoparticles is still a challenging task. The QSAR (quantitative structure-
activity relationship) methods predict activity of a class of compounds, mainly the organic ones, based on their 
common molecular structure. The nano-QSAR predicts the activity of entire particles, namely the 
nanoparticles. The activity most researched in nano-QSAR is the particles toxicity, as the model-based toxicity 
predictions could facilitate the complicated controlling process of industrial nanoparticles. 

However, as the conventional QSAR approaches profit from structural diversity of the organic molecules, the 
nanoparticles have quite simple chemical composition, but an immense variety of physical-chemical properties, 
such as surface structure, size-distribution, porosity, electrical potential, etc. These physical-chemical 
characteristics influence the events crucial for the particles kinetics, such as the agglomeration or aggregation 

of the particles, their sedimentation or uptake by a cell, and thus influence their biological interaction and 
consequently their toxicity effect. The toxicity itself is then induced by quantum properties of the particle, often 
specific to the nanosize. The physical-chemical characteristics are affected by design, e.g. by its primary 
properties like shape, size, or by surface modification, but they actually origin from the quantum properties 
related to each compound and its higher crystalline or other macromolecular structure. 

Obviously, it is difficult to properly model these properties and relations. Moreover, all these properties are 
induced by particle's interaction with the environment. And the environment differ, the experiment by 
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experiment. There are some relatively plausible models [1, 2], of nanoparticles toxicity, but their applicability 
is limited due to the variety of particles characteristics and heterogeneous experimental conditions that the 
toxicity assays are performed in. Moreover, the toxicity per se is actually a hidden variable, whose observable 
image is the toxicity response, which is measured by the means of toxicology assays. The response may 
further be affected by the treatment time (time of exposition), concentration of the particles or by the defence 
mechanisms of cell. 

Generally, there are two fundamental approaches to model the nanotoxicity. The first [1, 2] tries to model the 
causal mechanisms of toxicity while uses mostly the quantum chemical descriptors. This computationally 
demanding approach can provide interpretable results, yet valid only in quite narrowly defined conditions, i.e. 
for the particles that were assessed under homogeneous experimental conditions. Such an approach does not 
fit for large pooled data sets, collected in the inter laboratory projects, such as MODENA-COST. The latter 
approach [3] employs specifically the observable physical-chemical characteristics. This approach 
nonetheless does not explain the causal mechanisms, and therefore could not be employed in order to 
manufacture the particles safe by design. Moreover, the physical-chemical characterization can be even more 
costly than the toxicology experiments. However, if there was properly described the relationship of particles 
toxicity and their physical-chemical properties, and on the other hand there was a mechanistic model of these 
properties such as [4, 5], we could further employ it in some composite model which would alternately use 
these approaches, learning one from the other. 

In this paper, we present an extensive study documenting whether it is possible to learn (model) the toxicity 
response from the physical-chemical characteristics of the particles pooled by the MODENA-COST project. 
We propose a robust validation protocol to assess plausibility of the model. 

2. DATA DESCRIPTION 

We used the data collected during MODENA-COST project. The data set contains 189 measurements of two 

toxicity endpoints, i.e. the effective lethal concentrations EC25 [µg ml-1] and EC50 [µg ml-1], which were 
performed on 11 cell types, using altogether 4 cytotoxicity assays WST-1, MTT, ATP and LDH. The cells were 
altogether exposed to 46 nanoparticles of 12 different core-materials, altogether with 18 different coating (or 
without) for 2 - 114 hours. The experiments were done under 4 dispersion protocols with increasing energy 
input denoted as stirring, vortexing, bath sonication, cup horn sonication, and tip sonication. The data set 
contains also the following physical-chemical characteristics: 1) the shape of particles; 2) primary size of the 
particles, measured in two dimensions mostly by TEM; 3) specific surface, either calculated or measured by 
BET; 4) particles size in situ (DLS, NTA); and 5) zeta potential. 

To sum up, each record (row) in the data set represents a toxicity assessment (expressed by EC25 and EC50) 
of a particle, performed on certain cell line under given experimental conditions, by the means of certain 
cytotoxicity assay. Each of these records represents a potential example for the learning (modelling) algorithm. 

3. EXPERIMENTAL PROTOCOL 

The most popular procedure for testing the machine-learning models is cross-validation. The aim of the cross-
validation is to assess the accuracy of learning algorithm which was employed for building the model. 
Standardly, it splits the data examples into k disjoint subsets, leaves one of the subsets out for testing the 
learner which will have subsequently been learnt on the rest of the subsets. The predictions on the all left-out 
subsets are then aggregated into one accuracy measure. This aggregated accuracy measure is estimation of 
the model's general performance, i.e. of its future performance on unseen examples. 
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However, in our case the data examples are the toxicity experiments and related particles with their 
characteristics. It means that the data examples are not mutually independent, as there is standardly more 
particles made of he same material. Henceforth, when trying to extract the endpoint-relevant physical-chemical 
characteristics from the model, we cannot be certain whether they seem important for their true meaning for 

the toxicity, or because they are merely the features of several participating particles which are all made of the 
same toxic material. It also implies the uncertainty about the model's accuracy as follows. Having a seemingly 
accurate model, we are not able to distinguish whether the model is accurate for its generalization power which 
must hold for diverse types of materials, or simply because it have accurately classified only the particles of 
prevailing material. 

Henceforth, we designed a robust validation protocol which mimics the real-life application of a model. The 
protocol is based on so-called leave-one-label-out cross-validation (LOLO) [6], where the examples are divided 
into the disjoint subsets consistently with some third labelling. Here, we therefore divided the data set according 
to the core-materials of respective particles. Then, for each material presented in the data set, we left out the 
related examples, where the particles were made of that material, for testing, and learned a model on the rest. 
The learned model was thereafter applied on the left-out examples to predict their endpoint. This way, the 
predictions made for each left-out material were deposited together with the true endpoint values. Finally, the 

correlation coefficient (ρ) between all the predictions and related true endpoint values was calculated. Thus, 

we obtained an unbiased estimation of the model performance and correctly assessed the real ability of the 
model for inter-material generalization. 

We used the Pearson correlation coefficient as the accuracy measure, because its intuitive interpretation, i.e. 
range between 0 and 1, where the values close to zero suggest random result. To distinguish which results 
are "close to zero", namely to determine whether the model's correlation coefficient implies merely the 
correlation by chance, we designed a permutation test and realized a null distribution of the model. We 
randomly permuted the endpoint values of the examples inside the same material label (preserving the 
distribution inside of particles inside the material categories). Then, for each of the permutation, particularly 
we made 50 ones, we run the LOLO validation protocol as described a paragraph above. Hence, we obtained 
the accuracy measures (correlation coefficients) of 50 random models. The best of them was used as a 
threshold to determine whether the true (non-permuted) models stands above the null distribution. Finally, we 
filtered each model (of the true models, learned for each split of the data set), whose accuracy measure was 
below the accuracy of the best performing random model which had been learned on related random 
permutation.  

4. RESULTS 

First of all, we observed that the estimation of model accuracy by standard cross-validation procedure were 
indeed over-estimated as we supposed (see Figure 1). The accuracy estimation yielded with the standard 

cross-validated protocol (Figure 1, left) appears quite good (ρ = 0.93), and therefore we can suppose the 

related model will generalize well. But, in fact when employing our robust LOLO-based validation protocol we 
observe the results fundamentally different and worse (Figure 1, right). It implies that the model actually does 
not generalize, namely it does not generalize to the other types of material. 

Henceforth, we were using our designed LOLO-based protocol together with the null-distribution filtering as 
described in Chapter 3. Finally, we observed only two experimental conditions consistently appearing in the 

significant results, namely the WST-1 assays where the respective models yielded the maximal accuracy ρ = 
0.72 (see Figure 2), and the ATP assays, but only at the SK-OV-3 bone-marrow cell line, with the maximal 

accuracy ρ = 0.62. In Figure 2, left, left, we demonstrate the predictions for particles of certain material. We 
can observe that still for some of TiO2 and ZnO particles the model fails. In Figure 2, right, we can observe 
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the location of the former model (the red point) in the space of random models (the blue points). The location 
of true model is evidently outlying, which suggests significance of that result. 

 

Figure 1 The predictions of the model learned on all the examples where the EC25 had been assessed with 
the ATP assay. The predictions yielded with the standard cross-validation protocol (left) are fundamentally 

worse than those yielded with our robust LOLO protocol (right) 

 

Figure 2 The unbiased predictions of a model learned on the examples where the endpoint (EC25) had 
been assessed with the WST-1 toxicology assay, with bath sonication. The location of that model in the 

space of random models depicts the red point in the right plot. The coordinates x, y represent the training 
and validation accuracy respectively 

The structure of the model (from the Figure 2) itself is reported in Figure 3. We can observe that the physico-
chemical characteristics are placed in the upside part of the tree. It suggests the primary importance of these 
characteristics. On the other hand, the conditions determining the particular cell lines are just in front of the 
leaf nodes. It suggests that the physical-chemical characteristics have primal meaning for the general toxicity, 
while the model eventually fits for the particular cell line. However, having more data for particular cell line 
could probably result in more accurate model, as it would be less fitted particular conditions (cell lines).  
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Figure 3 The decision tree of the model learned on the examples where the endpoint (EC25) had been 
assessed with the WST-1 toxicology assay, with bath sonication. The nodes stand for the features,  

the leaves for predicted endpoint values 

5. CONCLUSION 

From the results observed, we can deduce that it is possible to learn from pooled data sets of nanoparticle 
characteristics and related toxicology endpoints. The resulting models can potentially generalize to other 
unseen types of materials. Nonetheless, when validating the models it is necessary to use a robust statistical 
protocol which mimics the model application in the real life. 

The aim of this work was nonetheless not to provide a general model of nanotoxicity. The reported models 
have still limited validity. The used data set is still too small, particularly regarding the fact that the data must 
be split somehow to deliver quite homogeneous experimental conditions. Moreover, there would be advisable 
to expand also the feature space of the data set, namely by measuring more physico-chemical characteristics 
of respective particles, or even to employ some quantum mechanical descriptors.  
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