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Abstract  

The Neural-Network Quantum States (NNQS) method is rapidly emerging as a powerful tool for investigating 

quantum many-body physics. By combining variational Monte Carlo techniques with neural network-based 

variational functions, this approach leverages the remarkable advancements in deep learning achieved in 

recent years. While substantial progress has been made in simulating magnetic systems on lattices, simple 

molecules, and even continuous systems, the ab initio simulation of complex strongly correlated electron 

systems continues to pose significant challenges. With the help of the generalized atomic limit (GAL) – a 

recently developed model describing a system of quantum dots coupled to a superconducting lead – we 

attempt to show the efficiency and accuracy of NNQS, mainly the Restricted Boltzmann Machine, by comparing 

the acquired results to other available methods such as exact diagonalization. The simultaneous study of the 

system’s properties such as the energy spectrum and quantum phase transitions could bring advancements 

in electronics, sensors or the design of high-quality qubits used in quantum computers. 

Keywords: generalized atomic limit, quantum dot, superconducting lead, neural-network quantum states, 

restricted Boltzmann machine, Andreev bound states 

1. INTRODUCTION 

The hybrid systems made of quantum dots embedded onto the surface of a superconducting lead have 

garnered significant attention due to their potential applications and ability to probe fundamental physical 

phenomena [1-3]. A quantum dot, which can be thought of as an artificial atom, is a nanostructure capable of 

carrying a small number of electrons, effectively capturing them inside a potential well on discrete energy 

levels. Coupled to a superconductor, a condensate state of boson-like electron pairs, this strongly correlated 

compound system is difficult to accurately model.  

We employ GAL – a recently proposed extension of the superconducting atomic limit of the superconducting 

impurity Anderson model. GAL can faithfully capture the Andreev bound states, i.e. sharp bound states within 

the superconducting gap, boundaries of quantum phase transitions, as well as other measurables. 

Even though traditional numerical approaches have been crucial in advancements in strongly correlated many-

body problems, recent progress in machine learning has shown a promising implementation in quantum 

physics and many other fields of all natural sciences. By combining the variational Monte Carlo methods with 

neural network-based approaches, the use of neural-network quantum states could be advantageous in 

approximating the complexity of many-body wavefunctions necessary for the study of highly correlated 

systems.  
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The restricted Boltzmann machine (RBM), a shallow neural-network model with rather simple architecture, is 

especially of interest due to its flexibility and simple implementation and it has been successfully applied to 

systems of quantum spins or correlated fermions in non-superconducting environments [4]. 

Leveraging a notable advantage of GAL, that is its straightforward implementation to complex quantum dot 

systems, we focus our study on linear chains of quantum dots through the method of exact diagonalization 

(ED) based on the Lanczos method and then use these results as a benchmark for the RBM model. 

2. THEORY OVERVIEW 

The basic structure of the model is based on the impurity Anderson model and the Bardeen-Cooper-Schrieffer 

theory of superconductivity. The atomic limit Hamiltonian can be written as 

ℋ = ∑ ∑ ε𝑗𝑑𝑗σ
†
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(1) 

where 𝑑𝑗σ
†

 and 𝑑𝑗σ are the creation and annihilation operators of a fermion on site 𝑗 with spin σ =  −1/2, 1/2. 

The dots are thought of as having a single energy level ε and can carry up to two electrons to satisfy the Pauli 

exclusion principle. This energy can be changed with an applied gate voltage. Adding a second fermion to an 

already occupied dot is penalized by the charging energy 𝑈. In the case of multiple dots, fermions can hop 

directly between the dots, denoted by the hopping constants 𝑡. The coupling constant Γ quantifies the induced 

superconducting behavior resulting from the proximity effect of the superconducting lead. Lastly, the dots can 

also influence each other in a non-local fashion via a lead-mediated interaction. This is introduced through the 

coherence length ζ, which correlates with the spatial distance between the dots. The sum over ⟨𝑗, 𝑖⟩ in Equation 

(1) expresses how the interaction is restricted to only neighboring dots and H.c. in the last term stands for the 

Hermitian conjugate of the rest of the term inside the brackets. The Hamiltonian (1) results from the 

superconducting atomic limit, that assumes that the superconducting gap Δ →  ∞ [5]. Even though this limit 

does not realize in real systems where Δ is typically smaller then 𝑈 and other energy scales, it preserves the 

key features of the system such as the non-local interdot interaction. 

2.1 Generalized Atomic Limit 

Reintroducing the superconducting gap Δ (which also represents the energy unit in what follows) back to the 

model is done by first shifting the first two terms in Equation (1) as ϵ𝑗 = ε + 𝑈𝑗/2 , which ensures that for  ϵ𝑗 =

0, the average occupation per dot is one electron, corresponding to the half-filling regime. The rescaling 

coefficients are found through perturbation theory in 𝑈 (the details can be found in [6]), while neglecting any 

contribution from the quasiparticle continuum above Δ and ensuring the correct behavior of Andreev bound 

states near quantum phase transitions (QPTs) observed at zero temperature. The new coefficients are given 

as 

ϵ̃ = νϵ,  𝑈 = ν2U,  𝑡̃ = νt,  Γ̃ = ν,  where   ν =
1

1 +
Γ
Δ

. 

We make additional assumptions about our system, such that there is no direct hopping between dots 𝑡 = 0, 

the dost are identical 𝑈𝑗 = 𝑈 and are connected to the same gate voltage 𝜖𝑗 = 𝜖 = 0. The distance between 

two adjacent dots is constant within the chain, thus 𝜁⟨𝑗,𝑖⟩ = 𝜁. The resulting GAL Hamiltonian reads 
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(2) 

2.2 Variational Monte Carlo 

As the system grows in size and complexity, solving the Schrödinger equation in order to find the eigenvalues 

and eigenstates of the system becomes intractable for exact methods. Advanced numerical methods such as 

variational Monte Carlo (VMC) are then used to overcome this problem. In its core, VMC leverages the 

standard quantum mechanics variational principle. It states that given an expected energy 𝐸0 of the true ground 

state Ψ0, any other trial wavefunction Ψ′ with energy 𝐸′ will comply with the inequality ⟨ℋ⟩Ψ′ = 𝐸′ ≥ 𝐸0 =

⟨ℋ⟩Ψ0
. Thus, we can approximate the ground state wavefunction by suggesting a suitable parametrized 

wavefunction Ψ(θ) and find an optimized set of θ∗ such that 𝐸(θ∗) ≈ 𝐸0. Given that the expected energy can 

be computed as 

 
𝐸(θ) =

⟨Ψ(θ)|ℋ|Ψ(θ)⟩

⟨Ψ(θ)|Ψ(θ)⟩
 . 

(3) 

However, the evaluation of 𝐸(θ) is not straightforward and methods such as Markov chain Monte Carlo must 

be used [7]. 

2.3 Restricted Boltzmann Machine 

The basic idea behind the learning process in any machine learning task is finding an existing relationship, i.e. 

mapping, between the input and output data, denoted by 𝑓(𝑥), by setting a basic structure of that mapping 

𝑓′(𝑥, θ) and searching for the best set of parameters θ∗, so that 𝑓(𝑥) ≈ 𝑓′(𝑥, θ∗). In the core of machine learning 

lies the loss function ℒ and its minimization through an optimization process. The specific formula of ℒ is 

chosen based on the task, nevertheless it provides a quantitative measure of how well our current model 

function 𝑓′(𝑥, 𝜃) agrees with the original input-output mapping. The new set of parameters is proposed 

according to an optimization method, usually based on gradient descent where the new set is chosen based 

on the steepest path to a minimum within the parameter space.  

Troyer and Carleo were able to combine the variational principle mentioned above with techniques of machine 

learning in their 2017 paper [8] and introduced a new technique to tackle the many-body problem in quantum 

mechanics – neural-network quantum states. According to their approach, the loss function ℒ takes on the 

form of Equation (3) and the trial wavefunction is represented with a neural network, specifically a model called 

the restricted Boltzmann machine. They were able to show that, despite its shallow and rather simple 

architecture, it is capable of giving accurate results for both the Ising and Heisenberg models.   

Getting their inspiration from the human brain, the building blocks of a neural network are artificial neurons or 

nodes, that are composed into visible and hidden layers. The nodes in layer 𝑖 receive an input from the previous 

layer 𝑖 − 1 and give an output via an activation function 𝜇(∑ 𝑤𝑖𝑗𝑗 v𝑖 + 𝑏𝑖) which is evaluated based on the 

received input v𝑖 from all nodes of the previous layer, the weight of the connection between the two nodes 𝑤𝑖𝑗 

and the bias of the activated layer 𝑏𝑖. The activation function is a chosen nonlinear function to ensure its ability 

to express complex mappings. In the case of RBM, there is only one visible and one hidden layer. The visible 

layer acting as an input layer consists of 𝑁 nodes 𝑣𝑖 with a bias 𝑎𝑖, the hidden layer has 𝑀 binary nodes. The 
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size of the network can be expressed through the ratio α =
𝑀

𝑁
 – it defines the density of the network and 

correlates with its expressiveness. The resulting RBM variational function (machine learning model) is given 

as 

 

Ψ(θ) = 𝑒𝑥𝑝 (∑ 𝑎𝑖𝑣𝑖
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𝑖,𝑗

𝑣𝑗 + 𝑏𝑖)]

𝑀

𝑖

 

 

(4) 

3. RESULTS 

3.1 Andreev Bound States via ED 

The Andreev bound states (ABS) represent the many-body states observed in the single-particle spectral 

function as 𝛿-peaks with energies within the interval [−Δ, Δ] [9], hence they are called subgap states. Study of 

ABS is crucial in explanation of Majorana bound states [10], 𝑑-wave superconductors [11] and they can be 

also potentially implemented as quantum bits [12]. 

The spectrum of the GAL Hamiltonian, see Equation (2), changes with the charging energy 𝑈, the coupling 

constant Γ and the coherence length 𝜁. It is emphasized that not all energy levels found through ED necessarily 

correspond to ABS as they are subjected to certain selection rules and are not all observed in tunneling 

spectroscopy. 

  

Figure 1 Subgap spectrum visualized through spin for a chain of 𝑁 = 3 dots for 𝑈 = 2 and Γ =  1 

Figure 1 shows the subgap spectrum of 𝑁 = 3 chain of dots. The 𝑦-axis shows the difference between 𝑛-th 

energy and the ground energy 𝐸0 and its development as ζ changes from the serial regime of ζ = 0 (where 

each dot has its own lead) to the parallel regime of ζ =  1 (where two adjacent dots are connected to the same 

lead). Notable behavior of the ground state can be seen in Figure 1 around ζ ≈ 0.35, where the first excited 

state touches the ground state. Since the found energies are color-coded according to the total spin 𝑆 of their 

corresponding state, we can see that at the critical point ζ ≈ 0.35, the ground state goes from the singlet 𝑆 = 0 
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to a doublet 𝑆 = 1/2 state, as it seemingly exchanges place with the first excited state. At around ζ ≈ 0.55, we 

can see another phase transition, this time back to the more common singlet state. 

3.2 Approximation of the Ground State via RBM 

Whether the neural network has the ability to approximate the wavefunction is largely influenced by the optimal 

choice of hyperparameters. These are parameters that have to be set manually before the learning process 

begins. For this specific case, the hyperparameters (with basic explanation of their meaning) were set as 

follows: α = 5 (the layer density), 𝑁chain = 3 (number of Markov chains), 𝑁sample = 2048 (total number of 

samples 𝑠(𝑖) generated within each iteration across all chains) and 𝑁discard = 200 (number of discarded samples 

as the chain was going through thermalization). The learning rate η was adjusted during the learning process 

– the initial value was η = 0.08 and it eventually decayed into η = 0.001. 

 Figure 2 shows the learning curve of RBM for 𝑁 = 3 in the same setting as in Figure 1. We include the exact 

energy of the ground state 𝐸ED, the expectation energy 𝐸RBM and the expectation value of total spin squared 

𝑆2 of the wavefunction RBM converged to. 

 

(a) 𝐸ED = −0.75, 

𝐸RBM ≐ −0.7493 (𝑆2 ≐ 0.0007) 

(b) 𝐸ED ≐ −0.8182, 

𝐸RBM ≐ −0.8180 (𝑆2 ≐ 0.7535) 

Figure 2 The learning curve of the RBM approximation of ground state energy for 𝑁 = 3 dots, 𝑈 = 2 and  

Γ = 1 at (a) ζ = 0.1 (i.e. the singlet region) (b) ζ = 0.45 (i.e. the doublet region) 

The energy levels according to ED are shown as horizontal grey lines. Lastly, we provide the learning curve 

of the Jastrow model [13] initialized with the same parameters as RBM to emphasize its relative fast learning. 

Figure 2 shows how RBM is able to approximate the wavefunction and not only give a precise energy of the 

ground state but also its correct spin 𝑆 (compare with Figure 1), as in Figure 2(a) the total spin squared is 

𝑆2 ≐ 0, corresponding to  𝑆 = 0 and in Figure 2(b) the state has 𝑆2 ≐ 3/4, corresponding to 𝑆 = 1/2, according 

to   𝑆2 = 𝑆(𝑆 + 1). 

4. CONCLUSION 

We used the recently developed GAL model to study a system of quantum dots coupled to a superconducting 

lead. We showed that GAL is capable of capturing the subgap spectrum consisting of Andreev bound states 

as well as the quantum phase transitions for an 𝑁 = 3 quantum dot chain. We observed that in the regime 𝑈 =

2, Γ = 1, the bound state of this system consisted of singlet and doublet states and showed two quantum phase 

transitions at ζ ≈ 0.35 and ζ ≈ 0.55. Having acquired the results through ED and using them as benchmark 
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value, we were able to demonstrate that RBM far outperforms the Jastrow model both qualitatively and 

quantitatively, is indeed able to approximate the complex ground state wavefunction of such correlated 

systems and can accurately find its energy and spin.  
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