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Abstract 

Quantum computing is currently emerging as a useful paradigm for solving highly complex computational 

problems. Current quantum computers are unfortunately too noisy to provide sufficient accuracy, and quantum-

classical hybrid algorithms emerged as a solution. Variational Quantum Deflation (VQD) has gained significant 

attention for addressing challenges in quantum chemistry, material science, etc. VQDs typically use multiple 

optimization methods, and the correct choice of optimization method can significantly impact performance. In 

our study, we focused on the comparison of multiple optimization methods used in VQD when applied to the 

electronic structure of crystals. The quantum part of VQD ran on a classical simulator with imported noise 

models from real quantum computers from the IBM Quantum Platform. 

Keywords: Quantum computers, optimization methods, variational quantum deflation (VQD), hybrid 

quantum computing, impact of noise 

1. INTRODUCTION 

Accurately knowing the electronic band structure of a crystal is very important in computational material 

science, because many physical properties can be derived from the electronic band structure. However, the 

problem of computing the band structure with classical computers can become significantly more 

computationally demanding as the system grows in size. Today’s most powerful supercomputers are not 

capable of simulating more than several hundreds or thousands of atoms.  

Quantum computers are emerging as a potential solution to this problem thanks to their capability to solve 

certain problems much faster than classical computers. Since quantum computers are relatively new 

technology and quantum states of qubits are vulnerable to the surrounding environment, the quantum 

computers can be significantly affected by noise. As a solution to this problem, hybrid classical-quantum 

algorithms are used, combining computations on the quantum computers with classical computers.  

In our study we used Variational Quantum Deflation (VQD) [1] algorithm to compute electronic band structure 

of the silicon crystal following the study of M. Ďuriška [2]. Our goal was to include the noise model of a real 

quantum computer to the calculations and to study how the results will be affected. We also studied how many 

iterations of the classical optimization method are required in order to achieve satisfactory results. The results 

obtained from VQD algorithm were compared with electronic band structure obtained as a classical solution 

of the tight binding method [3]. Noise model included in calculations has been imported from the real quantum 

computer from IBM Quantum Platform [4].  
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2. HAMILTON OPERATOR OF THE SYSTEM 

In order to compute the band structure of any crystal it is required to know its Hamilton operator which 

determines the total energy of the physical system [5]. The eigenvalues of the Hamilton operator are energy 

levels of the system [6]. The Hamilton operator of silicon for our study has been obtained from study of M. 

Ďuriška [2] and it is specified by the following matrix: 

𝐻̂ = det⁡

[
 
 
 
 
 
 
 
 
 

𝐸𝑠 𝑉𝑠𝑠𝑔0 0 0 0 𝑉𝑠𝑝𝑔1 𝑉𝑠𝑝𝑔2 𝑉𝑠𝑝𝑔3

𝑉𝑠𝑠𝑔0
† 𝐸𝑠 −𝑉𝑠𝑝𝑔1

† −𝑉𝑠𝑝𝑔2
† −𝑉𝑠𝑝𝑔3

† 0 0 0

0 −𝑉𝑠𝑝𝑔1 𝐸𝑝 0 0 𝑉𝑥𝑥𝑔0 𝑉𝑥𝑦𝑔3 𝑉𝑥𝑦𝑔1

0 −𝑉𝑠𝑝𝑔2 0 𝐸𝑝 0 𝑉𝑥𝑦𝑔3 𝑉𝑥𝑥𝑔0 𝑉𝑥𝑦𝑔1

0 −𝑉𝑠𝑝𝑔3 0 0 𝐸𝑝 𝑉𝑥𝑦𝑔1 𝑉𝑥𝑦𝑔2 𝑉𝑥𝑦𝑔0

𝑉𝑠𝑝𝑔1
† 0 𝑉𝑥𝑥𝑔0

† 𝑉𝑥𝑦𝑔3
† 𝑉𝑥𝑦𝑔1

† 𝐸𝑝 0 0

𝑉𝑠𝑝𝑔2
† 0 𝑉𝑥𝑦𝑔3

† 𝑉𝑥𝑥𝑔0
† 𝑉𝑥𝑦𝑔0

† 0 𝐸𝑝 0

𝑉𝑠𝑝𝑔3
† 0 𝑉𝑥𝑦𝑔1

† 𝑉𝑥𝑦𝑔1
† 𝑉𝑥𝑥𝑔0

† 0 0 𝐸𝑝 ]
 
 
 
 
 
 
 
 
 

        (1) 

where:  Es = -4.03 eV, Ep = 3.17 eV, Vss = -8.13 eV, Vsp = 5.88 eV, Vxx = 3.17 eV, Vxy = 7.51 eV are energies 

obtained from [7], 𝑔0
†
, 𝑔1

†
 , 𝑔2

†
 , 𝑔3

†
 are Hermitian transposed vectors g0, g1, g2, g3 defined as: 

𝑔0(𝑘⃗ ) =
1

4
(𝑒𝑖𝑘⃗ 𝑑0⃗⃗⃗⃗  ⃗

+ 𝑒𝑖𝑘⃗ 𝑑1⃗⃗⃗⃗  ⃗
+ 𝑒𝑖𝑘⃗ 𝑑2⃗⃗⃗⃗  ⃗

+ 𝑒𝑖𝑘⃗ 𝑑3⃗⃗⃗⃗  ⃗
) , 𝑔1(𝑘⃗ ) =

1

4
(𝑒𝑖𝑘⃗ 𝑑0⃗⃗⃗⃗  ⃗

+ 𝑒𝑖𝑘⃗ 𝑑1⃗⃗⃗⃗  ⃗
− 𝑒𝑖𝑘⃗ 𝑑2⃗⃗⃗⃗  ⃗

− 𝑒𝑖𝑘⃗ 𝑑3⃗⃗⃗⃗  ⃗
)   

𝑔2(𝑘⃗ ) =
1

4
(𝑒𝑖𝑘⃗ 𝑑0⃗⃗⃗⃗  ⃗

− 𝑒𝑖𝑘⃗ 𝑑1⃗⃗⃗⃗  ⃗
+ 𝑒𝑖𝑘⃗ 𝑑2⃗⃗⃗⃗  ⃗

+ 𝑒𝑖𝑘⃗ 𝑑3⃗⃗⃗⃗  ⃗
) , 𝑔3(𝑘⃗ ) =

1

4
(𝑒𝑖𝑘⃗ 𝑑0⃗⃗⃗⃗  ⃗

− 𝑒𝑖𝑘⃗ 𝑑1⃗⃗⃗⃗  ⃗
− 𝑒𝑖𝑘⃗ 𝑑2⃗⃗⃗⃗  ⃗

− 𝑒𝑖𝑘⃗ 𝑑3⃗⃗⃗⃗  ⃗
)                             (2) 

where the ⁡𝑘⃗  - vector defines the position in which Hamilton operator is determined and 𝑑 0, 𝑑 1, 𝑑 2, 𝑑 3 are 

positions of the closest atoms relative to the atom located at (0,0,0), in particular 

𝑑 0 =
𝑎

4
(1,1,1); ⁡⁡𝑑 1 =

𝑎

4
(1, −1,−1); ⁡⁡𝑑 2 =

𝑎

4
(−1,1, −1);⁡⁡⁡𝑑 3 =

𝑎

4
(−1,−1,1)        (3) 

where a is the lattice parameter of silicon obtained from [8] and equal to a = 0.543 nm.  

3. METHODS 

3.1  Variational Quantum Deflation (VQD) 

To compute k lowest eigenvalues of the Hamiltonian given by matrix (1), the Variational Quantum Deflation 

(VQD) has been chosen. The k-th eigenvalue, i.e. the k-th energy level, is obtained by finding the minimum of 

the cost function for the respective eigenvalue. The cost function has been specified by Higgott [1]: 

𝐶𝑘(𝜃 ) = ⟨𝜓(𝜃 )|𝐻̂|𝜓(𝜃 )⟩ + ⁡∑ 𝛽𝑖|⟨𝜓(𝜃 )|𝐻̂|𝜓(𝜃 𝑖)⟩|
2𝑛−1

𝑖=0            (4) 

where 𝜃   I the vector of variational parameters, which can be changed in order to minimize the cost function, 

𝜃 𝑖 is the vector of parameters resulting from minimization of the cost function for the n-1-th eigenvalue and 𝛽𝑖 

parameters represent an overlap and should be higher than 𝐸𝑖+1 − 𝐸𝑖 ≥⁡𝛽𝑖. After each evaluation of the cost 

function the results are post processed.  
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3.2  Classical optimization method 

Classical optimization is a key component of variational quantum algorithms. The optimization routine is used 

to minimize the cost function, given by the Equation 4, by iteratively adjusting components of the vector 𝜃 . For 

our study we employed the Constrained Optimization by Linear Approximation (COBYLA) method, because 

from experiments conducted by Bonet-Monroig et al. [9] the COBYLA resulted as a reasonable compromise 

between speed and accuracy. Another reason for choosing COBYLA is its universality as it can be used for 

noiseless and noisy environments. By choosing the same optimization method for noiseless and noisy 

environments we can directly compare the results for both scenarios.  

COBYLA is a derivative-free optimization algorithm, defined by Powell [10], which operates by constructing 

linear approximations to the objective function within a trust region framework, making it robust against 

measurement noise and the non-smooth nature of quantum cost landscapes. Its effectiveness in our 

simulations underscores the importance of selecting appropriate classical optimizers in variational quantum 

computing, especially when operating under realistic noise conditions. The choice of optimizer can significantly 

influence convergence behaviour and solution quality, and thus remains a critical factor in the overall 

performance of hybrid quantum-classical algorithms. 

3.3  Variational form 

Another critical element of the variational quantum algorithm is an appropriately chosen ansatz. The ansatz is 

a parametrized quantum circuit [11] used to approximate the eigenstates of the Hamiltonian. The structure of 

ansatz can significantly influence the quality of final results and also speed of the algorithm. For the case of 

our study the EfficientSU2 ansatz has been chosen as provided by Qiskit Circuit Library [12]. The ansatz has 

been designed as a 3 qubit quantum circuit with 24 parametrized quantum gates, see Figure 1. Each qubit in 

the circuit has been entangled with all other qubits in the circuit, this type of entanglement is typically called 

full entanglement. 

Figure 1 A schematic visualization of the used ansatz EfficientSU2. 

4. RESULTS 

To highlight the impact of noise on the accuracy, computations were conducted for four different iteration 

counts e.g. 100, 1000, 5000 and 10000. Each iteration count has been tested under two scenarios: (i) on the 

simulator of ideal quantum computer, without any noise, and (ii) on the simulator of real quantum computer 

with imported noise model from IBM Quantum Platform. The noise model has been imported from device 

ibm_brisbane which possesses quantum processor Eagle r3 with 127 qubits based on superconducting 

technology [4]. Number of k-points for the results including the effect of noise has been reduced in order to 

save computational resources. Results without the noise are plotted on Figure 2 (100 iterations), Figure 4 

(1000 iterations), Figure 6 (5000 iterations), Figure 8 (10000 iterations), see below. Results that include the 

effects of noise are plotted on Figure 3 (100 iterations), Figure 5 (1000 iterations), Figure 7 (5000 iterations), 

Figure 9 (10000 iterations), see below. 
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Figure 2 Band structure after 100 iterations        Figure 3 Band structure after 100 iterations, 

dnunununununununnoise included 
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Figure 4 Band structure after 1000  iterations          Figure 5 Band structure after 1000 iterations,  

dnunununununununnoise included 

 

 

 

 

 

 

 

Figure 6 Band structure after 5000  iterations        Figure 7 Band structure after 5000 iterations,  

dnunununununununnoise included 
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Figure 8 Band structure after 10000  iterations        Figure 9 Band structure after 10000 iterations,  

dnunununununununnoise included 

5. CONCLUSION 

In our study, we explored the feasibility of computing electronic band structure using simulators of the quantum 

computers. Two distinct strategies were incorporated: simulations without noise, which represented an ideal 

quantum computer, and simulations with imported noise models simulating a real quantum device. The VQD 

algorithm has been executed with both strategies with and without the effects of noise. 

Results from the noiseless simulations demonstrated that VQD algorithm can be successfully implemented to 

compute electronic band structure of the crystal described by Hamiltonian. From the results it is also clear that 

results are becoming more accurate as the number of iterations increases, i. e. with accordance with the 

studies such as Refs. [2, 13]. Noiseless results obtained from our computations show a strong agreement with 

electronic band structure obtained using classical computers.   

The results with included noise model represent capabilities of the current commercially available quantum 

computers. Unfortunately, a significant degradation in accuracy and increased variance of the results was 

found. Our results highlight the sensitivity of quantum algorithms to decoherence and quantum gate errors. 

Even under noisy conditions some quantitative aspects of the band structure remained distinguishable, 

suggesting that error-mitigation and error-correction strategies could be used to enhance the quality of the 

results.  

Our study highlights the current promises and present-day limitations of quantum computing in the context of 

computational material science. We demonstrate that while quantum algorithms are capable of capturing 

essential physical characteristics, their practical deployment remains constrained by the imperfections of 

current hardware. As the quantum computers and error-correction algorithms continue to evolve we anticipate 

that simulation of the electronic band structure will become not only practical but advantageous over classical 

computational methods in near future. This is expected to be especially true for complex systems where 

classical computational methods face scalability challenges. 
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