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Abstract

Quantum computing is currently emerging as a useful paradigm for solving highly complex computational
problems. Current quantum computers are unfortunately too noisy to provide sufficient accuracy, and quantum-
classical hybrid algorithms emerged as a solution. Variational Quantum Deflation (VQD) has gained significant
attention for addressing challenges in quantum chemistry, material science, etc. VQDs typically use multiple
optimization methods, and the correct choice of optimization method can significantly impact performance. In
our study, we focused on the comparison of multiple optimization methods used in VQD when applied to the
electronic structure of crystals. The quantum part of VQD ran on a classical simulator with imported noise
models from real quantum computers from the IBM Quantum Platform.

Keywords: Quantum computers, optimization methods, variational quantum deflation (VQD), hybrid
quantum computing, impact of noise

1. INTRODUCTION

Accurately knowing the electronic band structure of a crystal is very important in computational material
science, because many physical properties can be derived from the electronic band structure. However, the
problem of computing the band structure with classical computers can become significantly more
computationally demanding as the system grows in size. Today’s most powerful supercomputers are not
capable of simulating more than several hundreds or thousands of atoms.

Quantum computers are emerging as a potential solution to this problem thanks to their capability to solve
certain problems much faster than classical computers. Since quantum computers are relatively new
technology and quantum states of qubits are vulnerable to the surrounding environment, the quantum
computers can be significantly affected by noise. As a solution to this problem, hybrid classical-quantum
algorithms are used, combining computations on the quantum computers with classical computers.

In our study we used Variational Quantum Deflation (VQD) [1] algorithm to compute electronic band structure
of the silicon crystal following the study of M. Durika [2]. Our goal was to include the noise model of a real
quantum computer to the calculations and to study how the results will be affected. We also studied how many
iterations of the classical optimization method are required in order to achieve satisfactory results. The results
obtained from VQD algorithm were compared with electronic band structure obtained as a classical solution
of the tight binding method [3]. Noise model included in calculations has been imported from the real quantum
computer from IBM Quantum Platform [4].
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2, HAMILTON OPERATOR OF THE SYSTEM

In order to compute the band structure of any crystal it is required to know its Hamilton operator which
determines the total energy of the physical system [5]. The eigenvalues of the Hamilton operator are energy
levels of the system [6]. The Hamilton operator of silicon for our study has been obtained from study of M.
Durigka [2] and it is specified by the following matrix:

[ Es Vssgo 0 0 0 Vspgl Vspgz Vspg3—
Vieds  Es Vgl Vgl Vgl 0 0 0
0 —Vp91 E, 0 0 Vex@o  Vaiygz  ViyG:
R 0 —Vepg: 0 E, 0 Viy93s  VaxGo Viy91
H = det ~Vipgs O 0 E,  VigGi ViyG2 Viydo (1)
Vgl 0 Vgl Vgl Vegl E, 0 0
Vpgs 0 Vgl Vagd Vyed 0 E, 0
Vpgh 0 Vgl Vgl Vegd 0 0 E |

where: Es=-4.03 eV, Ep=3.17 eV, Vss =-8.13 eV, V5, = 5.88 eV, Vix = 3.17 eV, Vi = 7.51 eV are energies
obtained from [7], g(‘;, gf , g; , g;r are Hermitian transposed vectors go, g1, g2, gs defined as:

90(%) — %(eiﬁa + ei%dj’ + ei%@ + eiﬁﬂ) ,gl(l_é) — i(eiﬁfo + eiiédi’ _ eiEuTZ' _ eiﬁd?)
gz(E) — %(eiﬁfo _ eiTcE + eiTcE + eiﬁa) , g3(E) — i(eiﬁfo _ eiTcE _ eiﬁg _ ei;Tg) (2)

where the k - vector defines the position in which Hamilton operator is determined and (Zo, c?l, JZ, 33 are
positions of the closest atoms relative to the atom located at (0,0,0), in particular

do =2(111); dy =2(1,-1,-1); dp =2(-11,-1); dsy=2(-1,-11) 3)
where a is the lattice parameter of silicon obtained from [8] and equal to a = 0.543 nm.

3. METHODS

3.1 Variational Quantum Deflation (VQD)

To compute k lowest eigenvalues of the Hamiltonian given by matrix (1), the Variational Quantum Deflation
(VQD) has been chosen. The k-th eigenvalue, i.e. the k-th energy level, is obtained by finding the minimum of
the cost function for the respective eigenvalue. The cost function has been specified by Higgott [1]:

Ce(8) = (w()|A[w(8)) + Trt Bl (8)| Al (8.)2 (4)

where 6 | the vector of variational parameters, which can be changed in order to minimize the cost function,
5L- is the vector of parameters resulting from minimization of the cost function for the n-1-th eigenvalue and g;
parameters represent an overlap and should be higher than E;,; — E; = B;. After each evaluation of the cost
function the results are post processed.
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3.2 Classical optimization method

Classical optimization is a key component of variational quantum algorithms. The optimization routine is used

to minimize the cost function, given by the Equation 4, by iteratively adjusting components of the vector 6. For
our study we employed the Constrained Optimization by Linear Approximation (COBYLA) method, because
from experiments conducted by Bonet-Monroig et al. [9] the COBYLA resulted as a reasonable compromise
between speed and accuracy. Another reason for choosing COBYLA is its universality as it can be used for
noiseless and noisy environments. By choosing the same optimization method for noiseless and noisy
environments we can directly compare the results for both scenarios.

COBYLA is a derivative-free optimization algorithm, defined by Powell [10], which operates by constructing
linear approximations to the objective function within a trust region framework, making it robust against
measurement noise and the non-smooth nature of quantum cost landscapes. Its effectiveness in our
simulations underscores the importance of selecting appropriate classical optimizers in variational quantum
computing, especially when operating under realistic noise conditions. The choice of optimizer can significantly
influence convergence behaviour and solution quality, and thus remains a critical factor in the overall
performance of hybrid quantum-classical algorithms.

3.3 Variational form

Another critical element of the variational quantum algorithm is an appropriately chosen ansatz. The ansatz is
a parametrized quantum circuit [11] used to approximate the eigenstates of the Hamiltonian. The structure of
ansatz can significantly influence the quality of final results and also speed of the algorithm. For the case of
our study the EfficientSU2 ansatz has been chosen as provided by Qiskit Circuit Library [12]. The ansatz has
been designed as a 3 qubit quantum circuit with 24 parametrized quantum gates, see Figure 1. Each qubit in
the circuit has been entangled with all other qubits in the circuit, this type of entanglement is typically called
full entanglement.
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Figure 1 A schematic visualization of the used ansatz EfficientSU2.

4, RESULTS

To highlight the impact of noise on the accuracy, computations were conducted for four different iteration
counts e.g. 100, 1000, 5000 and 10000. Each iteration count has been tested under two scenarios: (i) on the
simulator of ideal quantum computer, without any noise, and (ii) on the simulator of real quantum computer
with imported noise model from IBM Quantum Platform. The noise model has been imported from device
ibm_brisbane which possesses quantum processor Eagle r3 with 127 qubits based on superconducting
technology [4]. Number of k-points for the results including the effect of noise has been reduced in order to
save computational resources. Results without the noise are plotted on Figure 2 (100 iterations), Figure 4
(1000 iterations), Figure 6 (5000 iterations), Figure 8 (10000 iterations), see below. Results that include the
effects of noise are plotted on Figure 3 (100 iterations), Figure 5 (1000 iterations), Figure 7 (5000 iterations),
Figure 9 (10000 iterations), see below.
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Figure 2 Band structure after 100 iterations
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Figure 4 Band structure after 1000 iterations Figure 5 Band structure after 1000 iterations,

noise included
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Figure 6 Band structure after 5000 iterations Figure 7 Band structure after 5000 iterations,

noise included
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Figure 8 Band structure after 10000 iterations Figure 9 Band structure after 10000 iterations,

noise included

5. CONCLUSION

In our study, we explored the feasibility of computing electronic band structure using simulators of the quantum
computers. Two distinct strategies were incorporated: simulations without noise, which represented an ideal
quantum computer, and simulations with imported noise models simulating a real quantum device. The VQD
algorithm has been executed with both strategies with and without the effects of noise.

Results from the noiseless simulations demonstrated that VQD algorithm can be successfully implemented to
compute electronic band structure of the crystal described by Hamiltonian. From the results it is also clear that
results are becoming more accurate as the number of iterations increases, i. e. with accordance with the
studies such as Refs. [2, 13]. Noiseless results obtained from our computations show a strong agreement with
electronic band structure obtained using classical computers.

The results with included noise model represent capabilities of the current commercially available quantum
computers. Unfortunately, a significant degradation in accuracy and increased variance of the results was
found. Our results highlight the sensitivity of quantum algorithms to decoherence and quantum gate errors.
Even under noisy conditions some quantitative aspects of the band structure remained distinguishable,
suggesting that error-mitigation and error-correction strategies could be used to enhance the quality of the
results.

Our study highlights the current promises and present-day limitations of quantum computing in the context of
computational material science. We demonstrate that while quantum algorithms are capable of capturing
essential physical characteristics, their practical deployment remains constrained by the imperfections of
current hardware. As the quantum computers and error-correction algorithms continue to evolve we anticipate
that simulation of the electronic band structure will become not only practical but advantageous over classical
computational methods in near future. This is expected to be especially true for complex systems where
classical computational methods face scalability challenges.
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