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Abstract  

Energy storage remains a central challenge in realizing a complete transition to renewable energy sources, 

with hydrogen storage emerging as a particularly promising solution. Metal hydrides offer a viable platform due 

to their high volumetric density of hydrogen and safety. However, further research is needed to identify 

compositions that combine high hydrogen capacity with fast hydrogen uptake and release at reasonable 

operating temperatures. The La-Ni-Sn system exhibits notable structural and electronic properties, making it 

a candidate for hydrogen storage and energy applications. The binary compound LaNi₅ and the ternary phase 

LaNiSn are known to form multiple hydrides, many of which remain poorly characterized. Using a quantum-

mechanical approach, this study focuses on the stoichiometric H₁LaNiSn phase, namely its stability, 

equilibrium properties, phonons, electronic structure and hydrogen absorption behavior. These results offer 

critical insight into the thermodynamic stability and electronic structure of H₁LaNiSn, enhancing the 

understanding of its potential in hydrogen storage applications. We determined the ground-state properties, 

including the lattice parameters, the electronic density of states and the phonon band structure. Additionally, 

we evaluated the temperature dependencies of key thermodynamic quantities (free energy, entropy and heat 

capacity) within the harmonic approximation. Importantly, the H₁LaNiSn phase was found to be mechanically 

stable, supporting its viability as a hydrogen storage material. 
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1. INTRODUCTION 

Efficient energy storage remains a major challenge in the complete transition to renewable energy sources, 

with hydrogen storage emerging as a particularly promising solution. Metal hydrides constitute a viable class 

of materials for this purpose, offering high volumetric density of hydrogen and favorable safety characteristics. 

However, continued research is essential to discover compositions that balance high hydrogen storage 

capacity with suitable absorption and desorption kinetics at practical temperatures.  

Ternary alloys based on LaNi₅ exhibit interesting structural and electronic characteristics, especially in the 

context of hydrogen storage and broader energy-related applications [1, 2]. Specific properties of the material 

can be systematically tuned by alloying with different elements, i.e by partial substitution of individual atoms 

[3]. Such modifications can significantly influence the crystal structure, lattice size and parameters, playing 

a critical role in hydrogen absorption properties [4].  
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Theoretical ab initio calculations assist significantly in the development of new materials. For example, they 

elucidate how the hydrogen interacts with the metal alloys [5], reveal the relationship between the atomic 

structure and physical properties [6 – 8] and also predict novel materials with desired characteristics that have 

not been experimentally realized yet. Moreover, valuable information on mechanical and thermal properties 

can be extracted from accurate phonon dispersion calculations [9]. Phonons, quasiparticles representing the 

atomic vibrations in solids, influence not only the mechanical properties of materials (e.g. structural stability), 

but also their thermal properties such as thermal conductivity, heat capacity and entropy.  

The La-Ni-Sn system, where the Sn partially substituted Ni in the LaNi5 structure, has shown promising 

hydrogen absorption characteristics. It was experimentally reported that Sn substitution expands the unit cell 

and reduces the hydrogen equilibrium pressure compared to pure LaNi5, i.e. this indicates stronger hydrogen 

bonding to the metal matrix [10, 11], which is advantageous for hydrogen storage applications. The theoretical 

investigations of the La-Ni-Sn system reported so far have primarily focused on electronic structure 

calculations [12 – 14], while the phonon-related studies remain limited. There are some calculations of phonon 

band structures for pure LaNi5 [15 – 17] and its partially Al-substituted modifications [18, 19]. However, no 

comprehensive study addresses the vibrational properties of Sn-substituted LaNi5 compound.  

This study is motivated by the limited theoretical understanding of the La-Ni-Sn system and its hydrides, 

particularly regarding phonon-related properties. We focus on one specific hydride, H₁LaNiSn, and employ 

a quantum-mechanical approach to explore its stability, equilibrium characteristics, phonon spectra, electronic 

structure and hydrogen absorption behavior. 

2. COMPUTATIONAL METHODOLOGY 

Quantum-mechanical calculations in this study were performed employing the pseudopotential method 

incorporated in the Vienna Ab initio Simulation Package (VASP) [20, 21] within the framework of Density 

Functional Theory (DFT) [22, 23]. The exchange and correlation energy was treated by the Generalized 

Gradient Approximation (GGA) in the parametrization of Perdew, Burke and Ernzerhof (PBE) [24] with the 

Projector-Augmented Wave (PAW) pseudopotentials [25, 26]. Specifically, the pseudopotentials used were: 

H_h, Ni_sv_GW, Sn_sv_GW and La_GW from the potpaw_PBE.64 VASP database. The plane-wave energy 

cut-off was set to 870 eV. The Brillouin zone sampling was defined via the KSPACING parameter set to 

0.01nm-1, corresponding to a 9×8×15 k-point mesh for the 16-atom unit cell. The Methfessel-Paxton smearing 

scheme of order 1 (ISMEAR = 1) with smearing width (parameter SIGMA) of 0.095 eV was applied for 

automatic complete relaxation of the 16-atom computational unit cell containing 4 atoms of H, 4 atoms of La, 

4 atoms of Sn and 4 atoms of Ni, see Figure 1(a), providing the equilibrium atomic positions, cell shape and 

volume. The phonon band structure and the phonon density of states were calculated using the Phonopy 

software [27]. For these calculations, a 96-atom cell, constructed as a √2×√2×3 multiple of the relaxed 16-

atom cell within a rotated coordination system, was employed.  

3. RESULTS 

In this work, the experimental crystallographic data (lattice parameters a = 0.72601 nm, b = 0.86465 nm and 

c = 0.44878 nm) were used as the input for DFT calculations performed in VASP. The energy-volume (E-V) 

data obtained from volume relaxation were fitted using the Murnaghan equation of state (see Figure 1(b)) to 

extract key mechanical properties such as the equilibrium volume V0, the bulk modulus B0 and its pressure 

derivative B0′. The energy minimum was identified at V0 = 0.177175 nm³/atom and E0 = −5.2059 eV/atom 

(indicated by a triangle in Figure 1(b)). The fitted bulk modulus is B0 = 84.77 GPa with a pressure derivative 

B0′ = 4.35. 
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Figure 1 (a) Schematics of the 16-atom unit cell of H1LaNiSn used for VASP calculations. (b) The DFT 

calculated energy-volume curve of H1LaNiSn (full yellow circles) fitted by the Murnaghan equation of state 

(yellow curve). The full black triangle indicates the E-V curve minimum and the green cross corresponds to 

the position of the completely relaxed ground state 

The high quality of the fit confirms the suitability of the Murnaghan equation for accurately describing 

the volumetric response of this system near equilibrium. The equilibrium parameters obtained after the 

complete relaxation (the INCAR-file tag ISIF = 3) of the 16-atom unit cell are: a = 0.73115 nm, b = 0.86992 nm 

and c = 0.44593 nm, equilibrium volume V0 = 0.177269 nm3/atom. 

To investigate the vibrational properties of the H₁LaNiSn system, phonon calculations were performed using 

DFT data implemented in the Phonopy package. The interatomic force constants derived from DFT were used 

to compute both the phonon band structure and the Phonon Density Of States (P-DOS) through the finite 

displacement method. The resulting phonon band structure is presented in Figure 2.  

 

Figure 2 Phonon band structure and phonon density of states of H₁LaNiSn calculated using the Phonopy 

package. The absence of imaginary modes confirms the dynamical stability of the structure. High-frequency 

flat bands suggest localized vibrations, particularly those involving hydrogen atoms 
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Phonon dispersion curves span the entire Brillouin zone and reveal no imaginary frequencies (no negative 

branches), which provides strong evidence that the H₁LaNiSn structure is dynamically stable. In phonon 

theory, imaginary frequencies signify structural instabilities – directions in which atomic displacements lower 

the system's total energy. Their absence indicates that the structure resides at a local minimum of the potential 

energy surface. In the optical region of the phonon spectrum, well-separated flat bands are observed 

at approximately 25, 28 and 41 THz. These flat bands correspond to localized vibrational modes likely 

associated with the lighter hydrogen atoms due to their low atomic mass and strong bond stiffness.  

To complement the phonon band structure analysis, the phonon density of states shown in the rightmost part 

of Figure 2 was also computed. The P-DOS reveals several distinct peaks distributed across the frequency 

spectrum. The low-frequency region (below approximately 10 THz) is dominated by acoustic modes and 

low-energy optical vibrations. Together, the phonon band structure and P-DOS provide clear evidence that the 

H₁LaNiSn compound is dynamically stable at zero temperature and pressure. The absence of imaginary 

frequencies in the band structure and only positive vibrational states through the entire Brillouin zone in the 

P-DOS confirm that the structure resides in a stable configuration with no instabilities.  

The thermodynamic properties of the H1LaNiSn phase were calculated using the Phonopy package. 

The temperature dependence of the Helmholtz free energy (F), entropy (S) and constant-volume heat capacity 

(CV) was evaluated in the range from 0 to 1000 K. The resulting trends are presented in Figure 3. The heat 

capacity CV rises with temperature and approaches the classical Dulong–Petit limit at high temperatures. This 

limit (approximately 3R ≈ 24.94 J/(K·mol), where R is the universal gas constant) represents the classical molar 

heat capacity of solids and reflects typical solid-state behavior in the harmonic approximation.  

 

 

Figure 3 Computed phonon-related thermal properties of the H1LaNiSn: Helmholtz free energy F, entropy S 

and constant-volume heat capacity CV. 
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4. CONCLUSIONS 

In this study, we conducted a detailed quantum-mechanical investigation of the H₁LaNiSn intermetallic phase, 

focusing on its equilibrium properties and vibrational behavior, using DFT combined with the Phonopy 

package. The absence of imaginary frequencies in the phonon band structure confirms the dynamical stability 

of the H₁LaNiSn structure. The phonon density of states reveals significant higher-frequency contributions from 

hydrogen atoms, highlighting their important role in the vibrational characteristics of the material. Overall, these 

findings provide valuable insights into the thermodynamic and mechanical stability of H₁LaNiSn, offering 

a theoretical foundation for future experimental and computational investigations aimed at its potential for 

hydrogen storage applications.  
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