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Abstract

Energy storage remains a central challenge in realizing a complete transition to renewable energy sources,
with hydrogen storage emerging as a particularly promising solution. Metal hydrides offer a viable platform due
to their high volumetric density of hydrogen and safety. However, further research is needed to identify
compositions that combine high hydrogen capacity with fast hydrogen uptake and release at reasonable
operating temperatures. The La-Ni-Sn system exhibits notable structural and electronic properties, making it
a candidate for hydrogen storage and energy applications. The binary compound LaNis and the ternary phase
LaNiSn are known to form multiple hydrides, many of which remain poorly characterized. Using a quantum-
mechanical approach, this study focuses on the stoichiometric H;LaNiSn phase, namely its stability,
equilibrium properties, phonons, electronic structure and hydrogen absorption behavior. These results offer
critical insight into the thermodynamic stability and electronic structure of H;LaNiSn, enhancing the
understanding of its potential in hydrogen storage applications. We determined the ground-state properties,
including the lattice parameters, the electronic density of states and the phonon band structure. Additionally,
we evaluated the temperature dependencies of key thermodynamic quantities (free energy, entropy and heat
capacity) within the harmonic approximation. Importantly, the H;LaNiSn phase was found to be mechanically
stable, supporting its viability as a hydrogen storage material.
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1. INTRODUCTION

Efficient energy storage remains a major challenge in the complete transition to renewable energy sources,
with hydrogen storage emerging as a particularly promising solution. Metal hydrides constitute a viable class
of materials for this purpose, offering high volumetric density of hydrogen and favorable safety characteristics.
However, continued research is essential to discover compositions that balance high hydrogen storage
capacity with suitable absorption and desorption kinetics at practical temperatures.

Ternary alloys based on LaNis exhibit interesting structural and electronic characteristics, especially in the
context of hydrogen storage and broader energy-related applications [1, 2]. Specific properties of the material
can be systematically tuned by alloying with different elements, i.e by partial substitution of individual atoms
[3]. Such modifications can significantly influence the crystal structure, lattice size and parameters, playing
a critical role in hydrogen absorption properties [4].
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Theoretical ab initio calculations assist significantly in the development of new materials. For example, they
elucidate how the hydrogen interacts with the metal alloys [5], reveal the relationship between the atomic
structure and physical properties [6 — 8] and also predict novel materials with desired characteristics that have
not been experimentally realized yet. Moreover, valuable information on mechanical and thermal properties
can be extracted from accurate phonon dispersion calculations [9]. Phonons, quasiparticles representing the
atomic vibrations in solids, influence not only the mechanical properties of materials (e.g. structural stability),
but also their thermal properties such as thermal conductivity, heat capacity and entropy.

The La-Ni-Sn system, where the Sn partially substituted Ni in the LaNis structure, has shown promising
hydrogen absorption characteristics. It was experimentally reported that Sn substitution expands the unit cell
and reduces the hydrogen equilibrium pressure compared to pure LaNis, i.e. this indicates stronger hydrogen
bonding to the metal matrix [10, 11], which is advantageous for hydrogen storage applications. The theoretical
investigations of the La-Ni-Sn system reported so far have primarily focused on electronic structure
calculations [12 — 14], while the phonon-related studies remain limited. There are some calculations of phonon
band structures for pure LaNis [15 — 17] and its partially Al-substituted modifications [18, 19]. However, no
comprehensive study addresses the vibrational properties of Sn-substituted LaNis compound.

This study is motivated by the limited theoretical understanding of the La-Ni-Sn system and its hydrides,
particularly regarding phonon-related properties. We focus on one specific hydride, H;LaNiSn, and employ
a quantum-mechanical approach to explore its stability, equilibrium characteristics, phonon spectra, electronic
structure and hydrogen absorption behavior.

2. COMPUTATIONAL METHODOLOGY

Quantum-mechanical calculations in this study were performed employing the pseudopotential method
incorporated in the Vienna Ab initio Simulation Package (VASP) [20, 21] within the framework of Density
Functional Theory (DFT) [22, 23]. The exchange and correlation energy was treated by the Generalized
Gradient Approximation (GGA) in the parametrization of Perdew, Burke and Ernzerhof (PBE) [24] with the
Projector-Augmented Wave (PAW) pseudopotentials [25, 26]. Specifically, the pseudopotentials used were:
H_h, Ni_sv_GW, Sn_sv_GW and La_GW from the potpaw_PBE.64 VASP database. The plane-wave energy
cut-off was set to 870 eV. The Brillouin zone sampling was defined via the KSPACING parameter set to
0.01nm", corresponding to a 9x8x15 k-point mesh for the 16-atom unit cell. The Methfessel-Paxton smearing
scheme of order 1 (ISMEAR = 1) with smearing width (parameter SIGMA) of 0.095 eV was applied for
automatic complete relaxation of the 16-atom computational unit cell containing 4 atoms of H, 4 atoms of La,
4 atoms of Sn and 4 atoms of Ni, see Figure 1(a), providing the equilibrium atomic positions, cell shape and
volume. The phonon band structure and the phonon density of states were calculated using the Phonopy
software [27]. For these calculations, a 96-atom cell, constructed as a V2xv2x3 multiple of the relaxed 16-
atom cell within a rotated coordination system, was employed.

3. RESULTS

In this work, the experimental crystallographic data (lattice parameters a = 0.72601 nm, b = 0.86465 nm and
¢ = 0.44878 nm) were used as the input for DFT calculations performed in VASP. The energy-volume (E-V)
data obtained from volume relaxation were fitted using the Murnaghan equation of state (see Figure 1(b)) to
extract key mechanical properties such as the equilibrium volume Vo, the bulk modulus Bo and its pressure
derivative Bo'. The energy minimum was identified at Vo = 0.177175 nm3atom and Eo = —5.2059 eV/atom
(indicated by a triangle in Figure 1(b)). The fitted bulk modulus is Bo = 84.77 GPa with a pressure derivative
Bo' =4.35.
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Figure 1 (a) Schematics of the 16-atom unit cell of H1LaNiSn used for VASP calculations. (b) The DFT
calculated energy-volume curve of HiLaNiSn (full yellow circles) fitted by the Murnaghan equation of state
(yellow curve). The full black triangle indicates the E-V curve minimum and the green cross corresponds to

the position of the completely relaxed ground state

The high quality of the fit confirms the suitability of the Murnaghan equation for accurately describing
the volumetric response of this system near equilibrium. The equilibrium parameters obtained after the
complete relaxation (the INCAR-file tag ISIF = 3) of the 16-atom unit cell are: a = 0.73115 nm, b = 0.86992 nm
and ¢ = 0.44593 nm, equilibrium volume Vo = 0.177269 nm?3/atom.

To investigate the vibrational properties of the H;LaNiSn system, phonon calculations were performed using
DFT data implemented in the Phonopy package. The interatomic force constants derived from DFT were used
to compute both the phonon band structure and the Phonon Density Of States (P-DOS) through the finite
displacement method. The resulting phonon band structure is presented in Figure 2.
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Figure 2 Phonon band structure and phonon density of states of H;LaNiSn calculated using the Phonopy
package. The absence of imaginary modes confirms the dynamical stability of the structure. High-frequency
flat bands suggest localized vibrations, particularly those involving hydrogen atoms
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Phonon dispersion curves span the entire Brillouin zone and reveal no imaginary frequencies (no negative
branches), which provides strong evidence that the H;LaNiSn structure is dynamically stable. In phonon
theory, imaginary frequencies signify structural instabilities — directions in which atomic displacements lower
the system's total energy. Their absence indicates that the structure resides at a local minimum of the potential
energy surface. In the optical region of the phonon spectrum, well-separated flat bands are observed
at approximately 25, 28 and 41 THz. These flat bands correspond to localized vibrational modes likely
associated with the lighter hydrogen atoms due to their low atomic mass and strong bond stiffness.

To complement the phonon band structure analysis, the phonon density of states shown in the rightmost part
of Figure 2 was also computed. The P-DOS reveals several distinct peaks distributed across the frequency
spectrum. The low-frequency region (below approximately 10 THz) is dominated by acoustic modes and
low-energy optical vibrations. Together, the phonon band structure and P-DOS provide clear evidence that the
H;LaNiSn compound is dynamically stable at zero temperature and pressure. The absence of imaginary
frequencies in the band structure and only positive vibrational states through the entire Brillouin zone in the
P-DOS confirm that the structure resides in a stable configuration with no instabilities.

The thermodynamic properties of the HiLaNiSn phase were calculated using the Phonopy package.
The temperature dependence of the Helmholtz free energy (F), entropy (S) and constant-volume heat capacity
(Cv) was evaluated in the range from 0 to 1000 K. The resulting trends are presented in Figure 3. The heat
capacity Cy rises with temperature and approaches the classical Dulong—Petit limit at high temperatures. This
limit (approximately 3R =24.94 J/(K-mol), where R is the universal gas constant) represents the classical molar
heat capacity of solids and reflects typical solid-state behavior in the harmonic approximation.
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Figure 3 Computed phonon-related thermal properties of the HiLaNiSn: Helmholtz free energy F, entropy S
and constant-volume heat capacity Cyv.
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4, CONCLUSIONS

In this study, we conducted a detailed quantum-mechanical investigation of the H;LaNiSn intermetallic phase,
focusing on its equilibrium properties and vibrational behavior, using DFT combined with the Phonopy
package. The absence of imaginary frequencies in the phonon band structure confirms the dynamical stability
of the H;LaNiSn structure. The phonon density of states reveals significant higher-frequency contributions from
hydrogen atoms, highlighting their important role in the vibrational characteristics of the material. Overall, these
findings provide valuable insights into the thermodynamic and mechanical stability of H;LaNiSn, offering
a theoretical foundation for future experimental and computational investigations aimed at its potential for
hydrogen storage applications.

DATA AVAILABILITY
The VASP input and output files are available under DOI:10.5281/zenodo.15386551.
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