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Abstract

Induction thermography is a well-established method for detecting and analysing cracks in metal products,
such as rails. However, quantifying defects, particularly those with complex geometries, remains a challenging
and intricate task. This paper addresses one critical aspect of defect quantification: the determination of crack
inclination angles, which is essential for accurate depth estimation and hazard level assessment. We propose
a novel approach that combines induction thermography data analysis with machine learning regression
models to estimate crack angles. The regression model is trained on a dataset generated through numerical
simulations, ensuring robust and reliable performance. The effectiveness of the proposed method is
demonstrated through both numerical and experimental results, showcasing its potential for improving crack
characterization in industrial applications. This work advances the field of non-destructive testing by providing
a more precise and automated solution for crack inclination angle determination, contributing to enhanced
structural integrity assessments.
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1. INTRODUCTION

Non-destructive testing (NDT) plays a critical role in ensuring the structural integrity of components across
various industries. Among NDT methods, inductive thermography stands out for its ability to detect surface
and near-surface cracks in conductive materials by combining electromagnetic induction with infrared imaging.
When an alternating current is applied through a coil, eddy currents are induced in the specimen, generating
heat. Cracks disrupt these currents, creating thermal anomalies captured by an infrared camera [1].

Unlike optical thermography [2,3], inductive thermography is largely unaffected by surface emissivity
variations, as heat is generated internally. Compared to eddy current testing [4], it offers fast, full-field imaging
without the need for scanning, although it is limited in detecting deep defects due to the skin effect. These
features make inductive thermography a powerful tool for rapid inspection and quality control, especially in
metallic structures [5].

While traditionally used for crack detection, recent advances have shown its potential for characterizing defect
geometry [5]. rack inclination angle influences the shape and symmetry of the thermal signature, providing a
basis for automated angle estimation. Moreover, knowing the crack angle is essential for assessing crack
depth and overall severity. Machine learning (ML) methods are well-suited for this task, enabling robust
interpretation of complex, non-linear thermal patterns [6,7]. ML can generalize across various crack
configurations and inspection conditions by training on simulated datasets and applying models to
experimental data [8,9].

This study presents a machine learning approach for estimating crack angles from thermographic data.
Synthetic phase profiles, generated via numerical simulations of induction heating, are used to train the
models. Experimental validation is performed on metallic specimens with artificial cracks. The proposed
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method offers a reliable framework for enhancing defect characterization in inductive thermography through
automated angle estimation.

2, NUMERICAL SIMULATION AND EXPERIMENTAL SETUP

Three-dimensional finite-element simulations in ANSYS Multiphysics generated the synthetic thermographic
data for angle estimation. Models captured eddy-current distributions and resulting Joule heating around
surface cracks, producing time-resolved temperature maps that simulate the thermal signatures recorded in
inductive thermography experiments.

The experimental setup for inductive thermography comprised an induction generator with an air-cooled, U-
shaped inductor (10 mm wide, ferritic core, copper windings), an infrared camera, and a test specimen. The
inductor operated at 30 kHz with a 50 ms pulse. Thermographic data were recorded using an IRCam VELOX
1310k SM camera with a cooled Indium Antimonide (InSb) detector. The camera provided a 180 Hz frame rate
at 1280 x 1024-pixel resolution and a 1.5-5.5 um spectral range. The specimen, a 1000 mm x 50 mm x 30
mm section of a railway rail, featured artificial cracks on its rounded head. Crack parameters included
perpendicular cracks at depths of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0 mm, and 1.0 mm deep cracks at
inclination angles of 0°, 15°, 30°, 45°, 60°, and 75°, with depth measured normal to the surface. Thermographic
sequences were recorded and processed using Matlab software. Figure 1 shows photo of the experimental
setup and the sample of a rail piece with artificial cracks made at different inclination angles.

a) b)

Figure 1 Photo of experimental setup (a) and sample (b)

3. METHODOLOGY

The results of the infrared thermographic inspection yielded a sequence of thermograms capturing the
transient thermal response of the coatings following flash heating. Inductive thermography produces time-
resolved infrared (IR) image sequences that capture surface temperature variations caused by eddy current-
induced heating. To enhance defect visibility, suppress noise and non-uniform heating effect, the Fast Fourier
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A fast Fourier transform was applied to each thermal sequence, yielding corresponding amplitude and phase
image sequences. The first phase image, corresponding to the dominant excitation frequency, is used as the
primary contrast-enhanced thermogram [10]. Figure 2a shows a representative thermogram of the rail

specimen; Figure 2b plots the temperature profile, and Figure 2c presents the 1D phase profiles extracted
perpendicular to the cracks (marked in red in Figure 2a).
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Figure 2 Example of the thermogram of the rail piece sample (a), temperature profile (b) and phase profile
(c) perpendicular to cracks

A one-dimensional phase profile was extracted perpendicular to the crack at its centre for each detected crack.
A 3 x 3 - pixel median filter was applied to these profiles to reduce local noise. The resulting smoothed phase

profiles served as input vectors for machine learning (ML) models, encoding geometric information pertinent
to crack orientation.

Regression models were developed to estimate crack angles from the processed phase profiles. Using
MATLAB's Regression Learner tool, various algorithms were trained and evaluated, including regression trees,

support vector machines (SVM), Gaussian process regression (GPR), bagged trees ensembles, and three-
layer neural network.

The training dataset comprised synthetic phase profiles generated through numerical simulations for crack
depths of 0.5, 1, and 2 mm. To assess model performance on unseen data, a simulation-based test dataset
included additional depths of 1.5 and 1.75 mm. Each crack was represented by multiple profiles, including the

central profile and additional profiles offset along and perpendicular to the crack length, to account for potential
positional inaccuracies in real-world scenarios.
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Model performance was measured by root-mean-square error (RMSE), which reflects the average deviation
between predicted and true angles (in degrees). Table2 compares validation-RMSE for five MATLAB
Regression Learner models: regression tree, SVM, Gaussian process regression (GPR), bagged-trees
ensemble, and a three-layer neural network, using 5-fold cross-validation. An independent simulated test set
(with added noise) then assessed generalizability.

Table 2 Comparison of ML models

ML model Regression tree SVM GPR Bagged trees Neural network
ensemble
RMSE, ° 5.8 8.4 2.6 5.0 34

GPR model achieved the best performance with RMSE = 2.6° on validation dataset and reached 4.3° RMSE
on the noisy test data. Figure 4 presents a residuals box plot for the test dataset, illustrating the distribution of
prediction errors in crack angle estimation. In this plot, residuals (differences between predicted and actual
angles) are summarized to assess model accuracy. A box plot displays the median, interquartile range, and
potential outliers, providing insights into the variability and central tendency of the residuals. A narrow
interquartile range and minimal outliers suggest that the model's predictions are consistently close to the actual
values, confirming its effectiveness in estimating crack inclination angles.
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Figure 4 Residuals box plot for the GPR model using the simulated test dataset

The performance of the machine learning model declined when applied to experimental data, with the RMSE
increasing from 4.3° on simulated data to 14.2°, particularly underestimating inclination angles above 15°. This
discrepancy likely arises from factors such as imperfections in artificial crack fabrication, differences between
the numerical model and actual material properties, and the influence of noise and external variables on
experimental results. Despite this, the model effectively estimated low inclination angles and remained
responsive to angle variations, albeit with a consistent underestimation. Generally, models trained solely on
simulated data may not perform optimally under real experimental conditions. Therefore, this performance,
while not perfect, is promising. To improve accuracy, future work could incorporate experimental data into the
training set or refine models to better reflect real-world material properties and noise characteristics.
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4, CONCLUSION

This study demonstrates the feasibility of estimating crack inclination angles in metallic components using
inductive thermography combined with machine learning. By applying fast Fourier transform (FFT) to thermal
image sequences, phase images were generated, from which one-dimensional phase profiles perpendicular
to cracks were extracted and smoothed. These profiles served as input features for various regression models
trained on synthetic data.

Among the evaluated models, Gaussian Process Regression (GPR) achieved the best performance, with a
root mean square error (RMSE) of 2.6° on validation data and 4.3° on simulated test data. However, when
applied to experimental data, the RMSE increased to 14.2°, particularly underestimating angles above 15°.
This discrepancy likely results from differences between simulated and real-world conditions, including material
properties and noise factors.

Despite these challenges, the model effectively estimated low inclination angles and remained sensitive to
angle variations. To enhance accuracy, future work could incorporate experimental data into the training set
or refine models to better reflect real-world conditions. Overall, this approach shows promise for non-contact,
rapid assessment of crack orientation, contributing to improved structural health monitoring and maintenance
strategies.
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