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Abstract  

In this study, Dense Optical Flow (DOF) was applied to videos of tundish and mold water models to reconstruct 

2D velocity fields and flow structures. Two bench tests (air bubbles; salt tracer) show that DOF yields 

quantitative maps suitable for analysis. Compared with Computational Fluid Dynamics (CFD), DOF provides 

comparable trends at much lower cost than Particle Image Velocimetry (PIV), enabling rapid datasets for digital 

twins.  

Keywords: Dense optical flow, fluid dynamics, computer vision, computational fluid dynamics, continuous 

casting 

1. INTRODUCTION 

Industry 4.0 pushes steelmakers toward digital twins, advanced analytics, and AI-driven optimisation to raise 

productivity and sustainability [1]. Particle Image Velocimetry (PIV) [2] is accurate but costly and cumbersome 

for routine experiments. Dense Optical Flow (DOF) offers a non-intrusive, low-cost alternative: by processing 

video frames, it can reveal velocity fields and coherent flow structures in water models with minimal setup [3]. 

The goal of this study is to develop and validate a dense optical flow–based workflow that recovers quantitative 

velocity fields and coherent structures from videos of tundish and mold water models, and to benchmark its 

accuracy with CFD. 

2. DENSE OPTICAL FLOW 

Dense Optical Flow (DOF) estimates 2-D motion between successive frames for every pixel by enforcing 

brightness constancy and spatial smoothness. The Farnebäck method [4] approximates local neighborhoods 

with quadratic polynomials: 

𝑓(𝑥)  ≈ 𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐 (1) 

and derives displacement: 

𝑑 = −
1

2
𝐴1

−1(𝑏2 − 𝑏1) 
(2) 

Multi-scale pyramids capture large motions while remaining robust to noise. Although abrupt discontinuities 

are slightly smeared, the method is accurate enough for bubble or salt solution tracking in water systems. 

3. WATER MODELS OF TUNDISH AND MOLD 

Scaled acrylic replicas (geometric scale = 1:2) of a single-strand tundish and mold were operated with 20 °C 

water, whose kinematic viscosity matches that of 1 600 °C molten steel after Froude scaling. Models permit 
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direct visualisation of inlet jets, recirculation zones, and residence time, helping engineers eliminate turbulence 

and dead zones before plant trials. 

4. 2D PROJECTION OF REAL-WORLD WATER-BASED SYSTEM  

4.1 Geometric Projection 

A 3-D particle displaced by 𝒅 projects to the image plane with error 𝑬 is shown on Figure 1; therefore: 

𝑣𝑡𝑟𝑢𝑒 =
𝐸 + 𝑑

∆𝑡
 

(3) 

where: 

 𝑣𝑡𝑟𝑢𝑒 – real velocity of tracked motion (m/s) 

 𝐸 – reprojection error (m) 

 𝑑 – projection distance (m) 

 ∆𝑡 – change in time over object’s position (s) 

𝑣𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 =
𝑑

∆𝑡
 

(4) 

From Equation 3 and Equation 4 it’s noticible that: 

𝑣𝑡𝑟𝑢𝑒 ≥ 𝑣𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 (5) 

 

Figure 1 2D projection of 3D space 

4.2 Camera Calibration 

Camera calibration [5] is a fundamental process in computer vision that aims to determine the intrinsic and 

extrinsic parameters of a camera to establish a relationship between 3D world coordinates and 2D image 

coordinates. The first step in camera calibration involves capturing multiple images of a known calibration 

object, such as a chessboard pattern, from different angles and positions. Those images are processed to 

identify keypoints, Figure 2, that are used for reduction of lens distortion such as barrel or pincushion.  
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Figure 2 Chessboard keypoints detection for camera calibration 

Chessboard images yield the intrinsic matrix, distortion coefficients and extrinsics needed to undistort 

frames, Figure 3, for make pixel to meters calculations more precise. OpenCV [6] python package were 

used to calculate those parameters. 

 

Figure 3 Undistorted frame 

4.3 Pixel-to-Metric Conversion 

To convert pixel measurements to real-world units, the Field of View (FOV) must first be determined using the 

following equation: 

𝐹𝑂𝑉 = 2arctan(
W

2FL
) 

(6) 

where: 

 𝑊 – width of sensor (mm) 

 𝐹𝐿 – focal length (mm) 

Once the 𝐹𝑂𝑉 is calculated, the actual width of the scene 𝑅𝑊 in real-world units can be computed with: 

𝑅𝑊 = 2𝑡𝑎𝑛 (
𝐹𝑂𝑉

2
) 𝐷 

(7) 

where: 

 𝐷 – distance from sensor to scene (m) 

To find the real-world distance per pixel 𝑃, the following equation is used: 
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𝑃 =
𝑅𝑊

𝑅𝐸𝑆
 

(8) 

where: 

 𝑅𝐸𝑆 – resolution of camera (pixels) 

These calculations enable a precise mapping between pixel-based measurements and real-world dimensions. 

The next step involves converting motion information from pixel-based measurements 𝑝/𝑓 where 𝑝 is 

displacement of pixels, 𝑓 is frame to real-world units 𝑚/𝑠. This transformation is crucial for accurately analyzing 

motion in a spatial context beyond the screen. The formula for calculating velocity 𝑣 in meters per second can 

be expressed as follows: 

𝑣 =  𝑑 × 𝑃 × 𝐹 (9) 

where: 

 𝑑 – displacement according to Equation 2  (p/f) 

 𝑃 – pixel size (m/p) 

 𝐹 – framerate of video sequence (f/s) 

5. EXPERIMENTAL SETUP 

Tundish and mold models (transparent acrylic) were filmed at 60 fps. Custom Python code (NumPy, OpenCV) 

logged images and post-processed DOF fields. Two trials were run: 

• Bubble tracking – air injection visualised flow in the mold. 

• Salt solution tracer – highlighted streamlines in the tundish. 

6. RESULTS AND EVALUATION 

6.1 Bubble speed detection in mold 

In Figure 4, a processed frame from the experiment is shown.The arrows indicate vectors of detected motion 

between two frames within a defined motion field. The size and color of each arrow correspond to the speed, 

with minimum and maximum values indicated in the bottom-left corner of the image. Figure 5 provides a 

velocity map that visually represents speed across the water-based model of mold. This map can be 

instrumental for further analysis in estimating fluid motion over time. 

 

Figure 4 Waterflow speed for 600 𝑙/𝑚 incoming water in mold 
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Figure 5 Waterflow speed map for 600 𝑙/𝑚 incoming water in mold 

6.2 Salt solution detection in tundish 

Salt solution flow dynamics within the tundish is illustrated in Figure 6 and corresponding speed map in Figure 

7. 

 

Figure 6 Waterflow speed incoming water in tundish 

 

Figure 7 Waterflow speed map incoming water in tundish 

6.3 Computational fluid dynamics evaluation 

Across both cases Computional Fluid Dynamics (CFD) [7] speeds exceeded DOF by ≈8 %, consistent with 2-

D projection theory and minor boundary-condition gaps. Nevertheless, correlation coefficients > 0.9 confirm 

DOF as a rapid, low-cost alternative to PIV for on-line monitoring or digital-twin data streams. Figure 8 shows 

directional correlation for mold within CFD simulation. 
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Figure 8 Waterflow vectors of incoming water in mold using CFD Ansys Fluent 

7. CONCLUSION 

Dense Optical Flow combined with calibrated video of water models offers a scalable, non-intrusive method to 

characterise steel-casting flow. Agreement with CFD underscores its reliability, while low hardware cost 

favours deployment in research or plant environments. Future work will extend the approach to machine 

learning dataset generation about flows and closed-loop control within digital-twin frameworks.  
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