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Abstract 

This work deals with the development of the preparation route for the composites with nickel aluminide 

reinforced by FeSi particles. The optimization of mechanical alloying of individual phases, mixing and 

consolidation by spark plasma sintering is presented. The composite is developed for the application as a 

future tool material. As the optimum conditions of mechanical alloying, the milling durations of 4 h and 10 h 

can be recommended for the synthesis of NiAl and FeSi phases, respectively. The hardness of composites 

increases with the amount of FeSi phase. 
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1.  INTRODUCTION 

European Commission launched the list of critical raw materials (CRM) in 2011 [1]. This activity promoted the 

research leading to the substitution or improved recycling of raw materials, which are of high economic 

importance and high supply risk simultaneously. This list is a subject of regular updates due to the changes 

in geopolitical situation and developments in industry. Among the tool materials, the current list contains W 

and Co, which are included in cemented carbides or in high-speed steels. So there is an effort to substitute 

these materials (or just the particular elements) by a reasonable alternative [2]. This substitution is moreover 

driven by the health aspects of the use of cobalt-containing materials [3]. In recent years we worked on the 

possible substitution of these materials by Ti-Al-Si alloys, which are in fact “in-situ” Ti5Si3 – TiAl or Ti3Al 

composites [4]. The materials were prepared by various methods, including powder metallurgy processes 

and also directional solidification, which enabled to grow fiber-reinforced Ti5Si3 – Ti3Al composites [5]. 

However, the feasibility of this substitution is limited by low fracture toughness of Ti-Al-Si materials, 

anisotropy of the thermal expansion coefficient of Ti5Si3 phase [6] and also by the fact that titanium was 

newly listed as a critical raw material in 2020 [1]. There were also other researches dealing with intermetallic 

composites running, such as aluminide - ceramics [7-9] or silicide – ceramics [10,11] or silicide-aluminide 

coatings [12-14]. 

This work deals with the preparation of a potential CRM-free (or low-CRM) tool material – a NiAl-FeSi 

composite, where nickel aluminide forms the matrix, while iron silicide, being the hard phase, acts as the 

reinforcement. In this paper, the development of the preparation route by the combination of mechanical 

alloying and spark plasma sintering is described. 

2. MATERIALS AND METHODS 

The NiAl-FeSi composite with the weight ratio of aluminide to silicide 1:1 was prepared by separate synthesis 

of nickel aluminide and iron silicide by mechanical alloying. The mixtures of the chemical composition 
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corresponding to NiAl and FeSi were prepared from elemental pure powders, which were mixed in 

appropriate amounts forming 20 g powder batches for mechanical alloying (MA). The following powders 

were used to prepare the blend for MA: Fe (purity 99.9 %, particle size <44 μm, Strem Chemicals), Al (pur ity 

99,7 %, particle size <44 μm, Strem Chemicals), Si (purity 99.5 %, particle size <44 μm, Alfa Aesar) and Ni 

(purity 99.99 %, particle size <150 μm, Strem Chemicals). Mechanical alloying of the blends was carried out 

in a planetary ball mill Retsch PM100, where the milling jar and also milling balls were made of AISI 420 

stainless steel. Argon was used as the protective atmosphere during mechanical alloying. The mechanical 

alloying conditions were following: duration of 2 – 10 h, change of rotation direction each 15 min, rotational 

velocity of 400 rpm, batch of 20 g and the ball-to-powder weight ratio of approx. 15:1. 

Mechanically alloyed powders were consolidated to cylindrical samples of 20 mm in diameter by spark 

plasma sintering (SPS, FCT Systeme HP-D10, Rauenstein, Germany) at the temperature 1000 °C with a 

pressure of 48 MPa for 10 min. The heating rate of 300 °C/min was used in this process, while the samples 

were cooled by the rate of 50 °C/min after the sintering process was completed. 

The phase composition of the mechanically alloyed powders, consolidated and annealed samples were 

examined by X-ray diffraction (XRD) analysis (X’Pert Pro diffractometer) using CoK radiation. 

Microstructure of the materials in the state of mechanically alloyed powders and consolidated samples was 

observed using Nikon MA200 optical microscope after etching by modified Kroll’s reagent (10 ml HNO3, 5 ml 

HF, 85 ml H2O). TESCAN VEGA 3 LMU scanning electron microscope equipped by an energy-dispersive 

spectrometer X-max 20 mm2 (EDS, Oxford Instruments, High Wycombe, United Kingdom) was used for local 

analysis of elemental composition.  

3. RESULTS 

Phase composition of the Ni-Al powders, determined by XRD, after various mechanical alloying durations is 

shown in Figure 1. It can be seen that nickel aluminide is present already after 2 h of mechanical alloying, 

but it is still accompanied by nickel. Unreacted nickel disappears after 4 h of the mechanical alloying 

process. After milling for 6 – 10 h, Ni3Al4 phase appears in the powders. 

 

Figure 1 X-ray diffraction patterns of the mechanically alloyed Ni-Al powders vs. milling duration 
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The observation of microstructure after mechanical alloying revealed the presence of light particles, whose 

amount increased with growing milling duration (see Figure 2). These particles were rich in iron and 

chromium (up to 12.5 wt.% of Cr, as identified by EDS), which results from the milling balls and walls of the 

milling vessel, as a result of the wear of the equipment. Based on the facts presented above, the optimal 

duration of mechanical alloying process was determined as 4 h for nickel aluminide. 

  

Figure 2 Optical micrographs of mechanically alloyed Ni-Al powder after milling for a) 2 h, b) 10 h 

In the case of mechanical alloying of Fe-Si powders, FeSi phase appeared also already after 2 h of milling, 

but up to 6 h it was accompanied by unreacted iron and silicon. These phases were not present after 10 h of 

milling, and the final product contained also Fe3Si and FeSi2 phases in minor amounts (see Figure 3). The 

microstructure observation showed the lamelar structure, containing light lamellae of iron after 2 h of milling 

and visible homogenization of the material and refinement of the particles with increasing process duration 

(Figure 4). Based on the phase composition, the mechanical alloying for 10 h was determined as the optimal 

way for the preparation of Fe-Si phase. 

 
Figure 3 X-ray diffraction patterns of the mechanically alloyed Fe-Si powders vs. milling duration 
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Figure 4 Optical micrographs of mechanically alloyed Fe-Si powder after milling for a) 2 h, b) 10 h 

The powders obtained by optimized mechanical alloying, i.e. milling 4 h for NiAl and 10 h for FeSi, were 

blended in 1:1 weight ratio and sintered by the spark plasma sintering method. The resulting structure is 

shown in Figure 5. There are regions of light phase, which is the nickel aluminide, and darker ones being 

based on iron silicide. The determination of the properties of the composite will be the subject of further 

work. 

 
Figure 5 Optical micrograph of FeSi-NiAl composite after spark plasma sintering at 1000 °C for 10 min 

4. DISCUSSION 

Mechanical alloying is usually presented as the technology, which can bring even the materials, which 

cannot be obtained by conventional processing methods, e.g. alloys non-miscible elements, such as Mg-Fe 

[15,16]. Moreover, the powders are severely plastically deformed during the mechanical alloying process, 

leading to ultrafine-grained materials with improved mechanical properties. On the other hand, common 

mechanical alloying process usually takes 20 – 100 hours [17]. In our case, the mechanical alloying process 

was optimized based on our previous works [4], so that the intermetallics can be obtained in much shorter 

time. The optimization included the adjustment of the ball-to-powder ratio, batch and rotational velocity in 

order to bring maximal energy to the batch. The result is a process with high ball-to-powder ratio of 10:1 to 

30:1, batch of 20 g in 500 ml vessel and rotational velocity of 400 rpm. It led to obtaining the almost pure 
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NiAl powder in 4 h, but FeSi powder after 10 h and still containing also other silicides (FeSi2 and Fe3Si). The 

reason for this difference probably lies in different mechanism of the mechanical alloying process. In 

preparation of NiAl phase, there are two ductile initial components. In such a case, lamellar structure usually 

forms very quickly. It leads to shorter diffusion paths between the reacting components and therefore, the 

mutual reaction can proceed quite quickly. In our optimized mechanical alloying process, the friction is also 

employed significantly, as no lubricant is used. The heat dissipated from the friction energy can be used for 

initiation of mutual reactions between nickel and aluminium, which are exothermic, but thermally activated. 

The temperature needed for the activation is close to the melting point of aluminium [18]. 

In the case of the silicide, the situation is different. Silicon behaves as brittle during the milling procedure. 

Therefore, it is fractured during the milling, and becomes incorporated in iron powder, which behaves 

plastically. The particles of incorporated silicon can also form bands that look like a lamellar structure 

(Figure 4a). What is the major difference from the formation of aluminide phase is higher initiation 

temperature silicide forming reaction [19]. Due to these facts, longer mechanical alloying process is needed 

to ensure sufficient fracturing of silicon to small particles and also to generate sufficient heat in order to 

initiate the silicide-forming reaction in the milling vessel.  

The fact that nearly pure NiAl nickel aluminide was produced, while there was a mixture of FeSi, FeSi2 and 

Fe3Si in the case of iron silicide, can be probably explained on the basis of equilibrium phase diagrams of 

these systems [20]. While the NiAl phase has a wide range of stability in the Ni-Al phase diagram, the range 

of stability of FeSi phase is close to the line with exact chemical composition. Therefore the silicide tends to 

coexist with its neighbours (Fe3Si and FeSi2) in the phase diagram.  

The resulting product after sintering contains the same phases as the mechanically alloyed powder. It 

implies that no reaction proceeds between nickel aluminide and iron silicide in the given temperature interval. 

The next step surely has to be the optimization of the NiAl : FeSi ratio, based on the characterization of the 

properties of the sintered materials. 

5. CONCLUSION 

This work was focused on the synthesis of composite, composed of FeSi and NiAl phases. These 

constituents were synthesized by mechanical alloying separately and then blended and sintered. For the 

mechanical alloying synthesis of NiAl phase, the duration of 4 h was determined as the optimum, while for 

FeSi a longer process of 10 h can be recommended. The composite was successfully sintered by spark 

plasma sintering method at the temperature of 1000 °C for 10 min. This work will be followed by detailed 

characterization of the composite and manufacturing of composites with varying ratio of FeSi and NiAl 

phases. 
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