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Abstract 

Artificial neural networks (ANN) embody the wide family of various brain-inspired approaches finding their 

utilization at the solution of many up-to-date issues, e.g., voice, picture and video processing and recognition 

or regression analysis. The ANN-based regression analysis is able to provide a functional relationship between 

the high number of predictors and high number of outcomes. This ANN ability has been in the frame of the 

submitted research applied to offer an alternative methodism for the forecasting of hot flow curve global 

maximum coordinates under a wide range of thermomechanical circumstances. The research is aimed to 

evaluate three types of ANN - a Multi-Layer Perceptron (MLP), Radial Basis Neural Network (RBNN) and 

Generalized Regression Neural Network (GRNN). The results have showed that considering the description 

of both peak point coordinates simultaneously, the RBNN two-outputs model offered the best performance 

from the point of view of achieved accuracy, forecasting ability and even feasible computing time.     

Keywords: Hot flow curve peak, regression analysis, multi-layer perceptron, radial basis neural network, 

generalized regression neural network 

1. INTRODUCTION 

A flow stress evolution is an inevitable phenomenon accompanying any deformation procedure. Taking into 

account a continuous hot forming process under a constant temperature and strain rate level, the flow stress 

evolution is characterized by its gradual increase as the consequence of an increasing strain. However, since 

the effect of dynamic softening phenomena, the evoked flow stress increase is gradually retarded and 

subsequently terminated [1]. An achieved flow stress global maximum and its corresponding strain level (peak 

point coordinates) represent temperature and strain rate dependent variables, and their forecasting finds its 

application e.g., when modeling a flow stress evolution [2] or trying to identify the onset of a dynamic 

recrystallization [3]. This forecasting issue can be solved either via the well-known Zener-Hollomon parameter 

[4] or alternatively via a multivariate polynomial [5] approach - however always separately, i.e., one forecasting 

model for the peak strain and another for the peak stress [2]. The submitted research then introduces another 

alternative methodology which has a potential to improve the forecasting accuracy and make the description 

be performed via only one regression model (two-parallel-outputs model). The peak point forecasting is going 

to be solved via three different artificial neural network (ANN) approaches [6-8]. Specifically, via a Multi-Layer 

Perceptron (MLP) network [9,10], Radial Basis Neural Network (RBNN) [11,12] and Generalized Regression 

Neural Network (GRNN) [13]. The introduced ANN approaches will be demonstrated on a peak point dataset 

experimentally acquired under six deformation temperatures (1043, 1113, 1203, 1303, 1413 and 1553 K) and 

four strain rates (0.02, 0.2, 2 and 20 s−1) - see corresponding experimental details in [14].  

2. ARTIFICIAL NEURAL NETWORK REGRESSION ANALYSIS 

2.1. Preparation of experimental dataset 

The utilizing of an ANN regression approach always requires to divide an experimental dataset on two subsets 

- a training one and a forecasting one (also known as a testing subset). The training subset is directly involved 
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in the process of a regression model assembling and takes the biggest share of an examined dataset - ca 

70 % in the current research. The rest of the studied dataset has been then applied to verify the forecasting 

capacity of the assembled ANNs. The specific data split is expressed in Table 1 - where the blue and red 

values correspond to the training and forecasting subset, respectively. The dataset preparation phase then 

also consists of a necessary normalization process to ensure the smooth, fast and successful course of ANN 

calculations. A normalization methodism applied in the current research transforms the studied variables into 

dimensionless vectors always with a corresponding standard deviation equal to 1.0 - see details in [15].  

Table 1 Experimental dataset and corresponding split to training (blue) and forecasting (red) subset   

 Peak Strain, εp (-) Peak Stress, σp (MPa) 

T (K) / ε̇ (s−1) 0.02 0.2 2 20 0.02 0.2 2 20 

1553 0.10 0.16 0.26 0.34 19.70 34.81 55.88 84.60 

1413 0.14 0.22 0.32 0.56 38.77 62.19 85.80 128.00 

1303 0.20 0.26 0.34 0.40 66.23 96.38 135.98 172.30 

1203 0.18 0.24 0.32 0.38 99.79 140.35 184.40 222.04 

1113 0.26 0.38 0.36 0.40 149.97 190.19 234.00 280.40 

1043 0.32 0.30 0.30 0.40 199.00 237.54 276.18 333.00 

2.2. Regression analysis via multi-layer perceptron 

In the current research, each examined ANN architecture mediates a functional relationship between two 

predictors (temperature, T (K), and strain rate, ε̇ (s−1)) and two outcomes (peak strain, εp (-), and peak stress, 

σp (MPa)). The MLP-based architecture [9,10] is formed by the network of artificial neurons (computational 

units) arranged into layers. Each neuron provides the simple weighted sum of previous-layer neuron outputs, 

and such sum is in addition processed through a specific activation function (logistic sigmoid and pure line [15] 

as regards to the hidden layers and outcome layer, respectively). Since the introduced architecture is highly 

nonlinear, its regression constants (weights, W, and biases, b) had to be obtained via nonlinear least square 

methodism, specifically by means of the Levenberg-Marquardt iteration algorithm [16,17] with the application 

of the Bayesian regularization [18,19], and running under the back propagation of outcomes error [20]. The 

more detailed description of the utilized MLP regression approach is available e.g. in [15]. The examined MLP 

architecture have, in the current research, two under-change hyperparameters - the number of hidden layers 

and its neurons. An appropriate hyperparameter configuration has been selected on the basis of heuristic 

approach by examining an interval of [1, 3] ⊂ ℕ and an interval of [1, 20] ⊂ ℕ as regards to the number of 

hidden layers and neurons, respectively. An MLP network with the ideal selection of a hyperparameter 

configuration is schematically demonstrated in Figure 1. 

 

Figure 1 Block diagram of the utilized MLP architecture 
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2.3. Regression analysis via radial basis and generalized regression neural networks 

Both the RBNN [11,12] and GRNN [13] regression techniques are based on the mapping of a low-dimensional 

predictor space into a high-dimensional one in order to convert a nonlinear regression issue into a linear form 

[21]. This is possible thanks to a radial basis hidden layer which employs the calculation of the Euclidean 

distances [22] between the individual datapoints of a predictor matrix and specific neuron centers (which are 

equal to the selected datapoints of the predictor matrix), and subsequently applies the Gaussian radial basis 

activation function [15,23] to return the hidden (radial basis) neuron outputs (representing a high-dimensional 

feature space) [15]. The response of the RBNN architecture is then simply obtained as the linear combination 

of high-dimensional predictor vectors. So, the regression constants (W and b) of the RBNN can be obtained 

via a simple linear least square method [24]. The GRNN response is, however, achieved by a slightly different 

way - the values of the regression constants are equal to the normalized values of corresponding outcome 

vectors. The more detailed description of the utilized RBNN and GRNN regression approaches is available 

e.g. in [15]. In contrast with the above-mentioned MLP architecture, both the RBNN and GRNN architectures 

have only one under-change hyperparameter - the value of a radial basis function spread. An appropriate 

spread has been found on the basis of a heuristic approach by examining two intervals, specifically [0.01, 0.99] 

⊂ ℚ with a step of 0.01 and [1, 100] ⊂ ℚ with a step of 0.1. RBNN and GRNN architectures with the ideal 

selection of a spread-hyperparameter are schematically demonstrated in Figure 2. With respect to the RBNN, 

a selected spread value has a direct influence on the number of hidden layer (radial basis layer) neurons. In 

the case of the GRNN, however, the number of radial basis neurons is equal directly to the number of training 

datapoints [21].  

 

Figure 2 Block diagrams of the utilized RBNN and GRNN architectures 

3. RESULTS AND DISCUSSION    

The performance of the above-described ANN architectures associated with the optimized hyperparameter 

configurations (Figures 1 and 2) is graphically expressed in Figure 3, where the mutual comparison  

is mediated via the absolute errors of a network response, i.e., ∆i = |Ei − Ci|, where the variables ∆i (-, MPa), 

Ei (-, MPa) and Ci (-, MPa) symbolize the absolute error, experimental (target) and calculated outcome of i-th 

temperature-strain rate combination, respectively, where i = [1, 24] ⊂ ℕ.     
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Figure 3 Performance of the examined artificial neural network approaches 

Considering the peak strain calculation, it can be said that the RBNN and GRNN architectures provided the 

best regression response for both the training and even forecasting subset. The MLP approach then returned 

practically zero ∆-values when considering the subset directly utilized in the regression analysis. Higher ∆-

values are then practically associated only with the forecasting subset - which indicate the occurrence of an 

overfitting phenomenon. Nevertheless, this does not have to immediately mean an inappropriate result; but, 

the obtained deviations must remain sufficiently low. However, the maximal ∆-value of the forecasting subset 

reaches up to 0.139 - which is unfortunately in the case of the εp-values (see  Table 1) a considerable deviation 

- so, the achieved MLP forecasting performance just cannot be considered as appropriate. Taking into account 

the peak stress calculation, the situation is quite different. The GRNN approach is entirely inappropriate since 

neither the training subset nor the forecasting subset is associated with a feasible ∆-values. On the contrary, 

for the εp-description inappropriate MLP approach was showed to be the best choice as regards to the σp-

description. The ∆-values higher than zero are, as in the case of the εp-description, practically associated only 

with the forecasting subset. However, unlike the εp-description case, the σp forecasting deviations are 

sufficiently low with the maximum of ca 3 MPa. So, the best εp-description and σp-description performance is 

associated with the GRNN and MLP methodology, respectively. Either way, this conclusion means that neither 

the MLP approach nor the GRNN approach was able to provide acceptable united description of both peak 

values only via one neural network. Nevertheless, as the Figure 3 further indicates that the RBNN approach 

has been able to provide a sufficient response for both outcomes. So, despite the fact that the RBNN approach 

provided not entirely the best response, its performance is high enough to consider this kind of network if one 

wants to describe the both peak values at once. Moreover, considering the necessary computing time, the 
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MLP methodism was much slower since its nonlinear character. On the contrary, the RBNN and GRNN 

approaches were characterized by a fast calculation procedure since their above-mentioned nonlinear-to-

linear transformation feature.   

4. CONCLUSION 

The submitted research is aimed on the assembling of a model offering the forecasting of the flow curve peak 

coordinates (namely, peak strain, εp (-), and peak stress, σp (MPa)) with respect to the temperature and strain 

rate combinations. This kind of forecasting model should thus represent the nonlinear dependency of two 

outcomes on two predictors. To deal with this requirement, three various Artificial Neural Network (ANN) 

architectures have been applied and evaluated in the sense of their forecasting ability and required computing 

time. A Multi-Layer Perceptron (MLP) architecture offered a highly nonlinear model which was able to precisely 

describe only the σp-outcome. A Radial Basis Neural Network (RBNN) and its modified version known as 

Generalized Regression Neural Network (GRNN) then offered the mapping of the low-dimensional predictor 

space into a high-dimensional one in which the formerly nonlinear regression task become to be linear - this 

led to the significant reduction of a required computing time. However, the GRNN approach was able to return 

a suitable network response only in the case of the εp-description. So, neither the MLP nor the GRNN 

methodism was able to provide acceptable results for both peak point coordinates when utilizing two-outputs 

model. Fortunately, it has been showed that the RBNN model is suitable not only from the point of view of a 

fast computing time but also for its ability to forecast both peak point coordinates with a suitable accuracy via 

only one ANN model containing two parallel outputs.    
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