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Abstract 

The paper compares classical models for determining the thermophysical properties of steels based primarily 

on empirical equations derived using linear regression methods with models created using machine learning 

methods. The selected investigated quantities include phase transformation temperatures, specific heat 

capacity, coefficient of thermal expansion. The results of both approaches are verified on the measured data 

by methods of thermal analysis such as differential scanning calorimetry, differential thermal analysis and 

dilatometry. The methods are evaluated both in terms of the accuracy of predictions and in terms of the 

adequacy of use for a specific purpose, or in terms of the complexity of creating and using the model. 
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1. INTRODUCTION 

Steel is still remaing one of the most important materials in world because of its properties and it is not going 

to change any soon [1,2]. Thermophysical properties of steel are very important for both manufacturing 

processes (control of melting, casting, heat treatment processes) both research purposes (modelling of 

technology operations) [3]. Results in work were obtained by using of a linear regression (liquidus and solidus 

temperature, specific heat capacity), and two methods of machine learning. Multi-layer perceptron (artificial 

neural network) was used for predicting of liquidus and solidus temperature and method of decision tree for 

predicting of specific heat capacity. 

1.1. Linear regression 

In a number of technical areas, the dependence of the output quantity y on the values of the input variables x 

is monitored [4]. The sought-after quantity y can also be the thermophysical properties of materials, such as 

e.g. liquid temperature, solidus or heat capacity. The input variable x is then usually the composition of the 

material (proportion of individual elements or components), and if the required quantity is temperature 

dependent, then also the temperature. Determining the specific relationship between composition, temperature 

and the thermophysical quantity sought is then the task of regression analysis. Regression analysis is one of 

statistical methods by which we estimate the value of a certain random variable (so-called dependent 

variables) based on knowledge of other variables (independent variables). The most common type of 

regression is linear regression, where a dependence in the form of a linear function is assumed, although the 

arguments of the function may not be linear [5]. The linear regression can be multiple and the searched function 

then has the form: 

y=β0+β1∙x1+β2∙x2+β3∙x3+...+βn∙xn               (1) 

where: 

 y - dependent variable (1) 
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 βi - coefficient (1) 

 xi - independent variable (1). 

If a given phenomenon has a nonlinear dependence on one of the quantities, the problem can be linearized 

and the sought dependence can take on a form combining linear and nonlinear terms:  

y=β0+β1∙(ln(x1)) +β2∙ 𝑥2
2+β3∙x3+...+βn∙xn             (2) 

The actual search for βi coefficients is then routinely performed by the least squares method, which minimizes 

the sum of the squares of the deviations between the measured value and the estimated value [6]. Coefficient 

estimates can be obtained using regression tools e.g. in Excel or using software such as Matlab, Octave, R or 

some of the Python libraries (Scikit, Sklearn), which also offer tools for determining the suitability of a given 

linear model. Of these, the most frequently used coefficient of determination is R2, the mean squared error 

MSE (mean squared error), or the square root of the mean squared error RMSE (root mean squared error). 

Furthermore, these software tools allow you to identify variables that do not have a significant impact and can 

be neglected when looking for dependencies. A description of all regression diagnostics tools that can be 

applied using the above SW is in [7]. 

1.2. Machine learning 

Machine learning techniques expanded in last decades into almost all fields of science, material engineering 

is not an exception. Rapid development of algorithms and increasing computational power of computers allows 

to model even highly non-linearly dependent properties [8-10] 

An ANN consists of non-linear basic processing units called neurons. The neuron model and architecture of a 

neural network describe how a network transforms its inputs into outputs. The neural network architecture 

consists of multiple layers of neurons which have a summing up junction and a transfer function. A single 

neuron transmits an input p through the connection that multiplies its strength by the weight w to form a product 

wp. A bias b is then applied - it is much like a weight with constant value of 1 but can be omitted. The transfer 

function then produces the neuron output Y using the product wp and bias. There are various transfer functions, 

most commonly used are sigmoid and linear. The central idea of an ANN is to adjust weights and biases or 

the network itself adjusts these parameters to achieve accurate results - desired output values [11-13]. 

Decision tree learning or induction of decision trees is one of the predictive modelling approaches used in 

statistics, data mining and machine learning. It uses a decision tree (as a predictive model) to go from 

observations about an item (represented in the branches) to conclusions about the item's target value 

(represented in the leaves). Tree models where the target variable can take a discrete set of values are called 

classification trees; in these tree structures, leaves represent class labels and branches represent conjunctions 

of features that lead to those class labels. Decision trees where the target variable can take continuous values 

(typically real numbers) are called regression trees. Decision trees are among the most popular machine 

learning algorithms given their intelligibility and simplicity [14-16]. 

2. METHODOLOGY 

Over 150 alloyed steel grades were used for obtaining linear regression equations. The same data set was 

used for training, validating and testing of ANN. These element contents represent inputs to the model. Output 

of model is a value of TL and Ts. The chemical composition of the steels used in modelling is summarized in 

Table 1. Source of these data is [17]. Table 2 shows range of 37 steel grades used for validation of obtained 

models. Also linear regression equations for specific heat capacity were obtained based on this dataset which 

properties were described in [18]. 
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Table 1 The composition of steels used for the creation of the ANN 

Content (wt%) C Mn Si P S Cu Ni Cr N Mo V Fe 

minimum 0.01 0.02 0.12 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 bal. 

maximum 1.20 1.63 2.07 0.04 0.04 0.2 3.30 5.00 0.02 0.99 0.14 bal. 

mean 0.46 0.72 0.43 0.01 0.01 0.04 0.54 0.92 0.01 0.16 0.01 bal. 

Table 2 The composition of steels used for evaluating of the ANN models and obtaining equations for cp 

Content (wt%) C Mn Si P S Cu Ni Cr N Mo V Fe 

minimum 0.07 0.32 0.17 0.01 0.00 0.03 0.01 0.03 0.00 0.00 0.00 bal. 

maximum 1.03 1.43 0.94 0.02 0.01 0.15 2.34 5.00 0.01 1.22 0.92 bal. 

mean 0.35 0.85 0.32 0.01 0.00 0.08 0.22 0.93 0.01 0.18 0.09 bal. 

3. RESULTS 

3.1. Temperature of liquidus 

Using linear least squares regression, described previously, the liquid temperature equation for Fe-C-O-Cr, 

Fe-C-O-Ni and Fe-C-O-Cr-Ni alloys was derived using SW Matlab. The experimentally obtained liquidus 

temperatures of 36 alloys were measured by direct thermal analysis. The obtained equation has the form: 

𝑇L = 1543.5 − 75.068 ∙ 𝑤𝑡𝐶 − 3,456 ∙ 𝑤𝑡𝐶𝑟 − 2.904 ∙ 𝑤𝑡𝑁𝑖 + 16.580 ∙ 𝑤𝑡𝑂 − 67.876 ∙ 𝑤𝑡𝑀𝑛 + 1671.400 ∙ 𝑤𝑡𝑆𝑖 +

2120.900 ∙ 𝑤𝑡𝑃 − 150.610 ∙ 𝑤𝑡𝑆 − 421.450 ∙ 𝑤𝑡𝐴𝑙 − 1261.700 ∙ 𝑤𝑡𝐶𝑢 + 202.740 ∙ 𝑤𝑡𝐶𝑜 − 22.839 ∙ 𝑤𝑡𝑁     (3) 

where: 

 wt - mass fraction (%) 

Figure 1 shows a comparison of the experimentally obtained liquidus temperatures and the temperatures 

obtained using the new equation. The coefficient of determination is 0.99, which means a very good 

agreement. The standard deviation of the measured and calculated values is 3.36 ° C. 

3.2. Temperature of solidus 

Using same procedure as for liquidus temperature, the temperature of solidus was derived. The experimentally 

obtained solidus temperatures of 36 alloys were measured by direct themal analysis. The obtained equation 

has the form: 

𝑇L = 1539.8 − 183.3 ∙ 𝑤𝑡𝐶 − 4.6 ∙ 𝑤𝑡𝐶𝑟 − 4.8 ∙ 𝑤𝑡𝑁𝑖 − 9.7 ∙ 𝑤𝑡𝑀𝑛 − 48.1 ∙ 𝑤𝑡𝑆𝑖 − 99.4 ∙ 𝑤𝑡𝑃 − 934.1 ∙ 𝑤𝑡𝑆 −

−109.9 ∙ 𝑤𝑡𝐶𝑢 − 16.9 ∙ 𝑤𝑡𝑉 + 7.4 ∙ 𝑤𝑡𝑀𝑜            (4) 

Figure 2 shows a comparison of the experimentally obtained solidus temperatures and the temperatures 

obtained using the new equation. The coefficient of determination is 0.945, which means a very good 

agreement. The standard deviation of the measured and calculated values is 11.1 ° C. 

3.3. Specific heat capacity 

Two equations for the heat capacity calculation were derived using least squares linear regression. They were 

divided into an area from 30 to 650 ° C and from 850 to 1450 ° C. For simplicity, phase transformations were 

not included in the calculation. The use of neural networks would be more appropriate to describe the course 

of heat capacity in the whole range, ie from 30 to 1580 ° C. 
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Equation for temperature interval of 30 - 650 °C: 

𝑐p = 0.366 + 0.001 ∙ 𝑇 + 0.021 ∙ 𝑤𝑡𝐶 + 0.001 ∙ 𝑤𝑡𝐶𝑟 − 0.002 ∙ 𝑤𝑡𝑁𝑖 + 0.535 ∙ 𝑤𝑡𝑂 + 0.499 ∙ 𝑤𝑡𝑀𝑛 − 0.855 ∙

𝑤𝑡𝑃 − 0.064 ∙ 𝑤𝑡𝑆 + 1.482 ∙ 𝑤𝑡𝐴𝑙 + 0.890 ∙ 𝑤𝑡𝐶𝑢     (J·K-1·g-1)          (5) 

Equation for temperature interval of 840 - 1 450 °C: 

𝑐p = 0.829 + 0.063 ∙ 𝑤𝑡𝐶 − 0.009 ∙ 𝑤𝑡𝐶𝑟 − 0.005 ∙ 𝑤𝑡𝑁𝑖 − 0.923 ∙ 𝑤𝑡𝑂 − 1.202 ∙ 𝑤𝑡𝑀𝑛 + 5.740 ∙ 𝑤𝑡𝑃 − 0.373 ∙

𝑤𝑡𝑆 − 1.550 ∙ 𝑤𝑡𝐴𝑙 − 1.042 ∙ 𝑤𝑡𝐶𝑢 (J·K-1·g-1)      (6) 

Figure 3 shows a comparison of experimentally obtained heat capacities and values obtained using the new 

equation. The coefficient of determination is 0.99, which means a very good agreement. The standard 

deviation of the measured and calculated values is 0.01 J·K-1·g-1. 

Figure 4 shows that there is less agreement between the measured and calculated values than in the case of 

up to 650 °C. The coefficient of determination is 0.88. The standard deviation is 0.05 J·K-1·g-1. Less agreement 

may be due to the fact that up to 900 °C heat capacities could still be affected by the course of phase 

transformations they could also be affected by the dissolution of carbides in the range of 900 - 1000 ° C. The 

fact that the heat capacities were measured up to 700 °C on the Setaram Sensys Evo TG / DSC and from 700 

to 1580 °C on the Setaram MHTC 96 Line can also play a role. 

  

Figure 1 Liquidus temperature - model vs. 

measurement 

Figure 2 Solidus temperature - model vs. 

measurement 

  

Figure 3 cp - model vs. measurement  

(30 - 650 °C) 

Figure 4 cp - model vs. measurement 

(840 - 1 450 °C) 
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Table 3 shows results obtained by linear regression compared with results obtained by machine learning 

methods in previous work [19-21]. As for liquidus and solidus temperature, both methods seem to be suitable 

but linear regression slightly overperforms ANN. Usability of derived equations is strictly limited by the range 

of chemical composition of steel grades used. As for specific heat capacity, linear regression fails in giving 

reasonable values near the temperatures of phase changes (both in low- and high-temperature area) and 

using of decision tree modelling gives more accurate results in whole range of temperatures. 

Table 3 Comparison of results obtained by different methods 

 R2 (1) 

 Linear regression ANN 

Liquidus temperature 0.99 0.92 

Solidus temperature 0.95 0.94 

Specific heat capacity 0.99/0.88 0.98 

4. CONCLUSION 

Paper shows possibility of using classic approach of modelling thermo-physical properties, on example of 

temperatures of liquidus and solidus and specific heat capacity. The method of linear regression is suitable for 

phase change temperature predictions but fails in describing continuous property dependent not only on 

composition but also on temperature. Reason is non-linearity in course of the specific heat capacity 

dependency on temperature during phase changes. For predicting properties dependent on temperature, the 

method of decision tree from broad family of machine learning methods seems to be much more suitable. As 

for the multi-layer perceptron artificial neural network method, it seems to be good for predicting temperatures 

of phase changes, but it is slightly overperformed by linear regression model both for liquidus and solidus 

temperature. One must be careful when using obtained equations and avoid using them outside of the validity 

range - outside of the chemical composition range mentioned in the paper. 
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