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Abstract 

A study of A3003 aluminium alloy in H12 temper regarding microstructure analysis, tensile testing, fatigue 

loading and fractography of fracture surfaces was carried out. Specimens were cyclic loaded at five stress 

amplitude levels of 62, 68, 70, 72 and 76 MPa so that the results for both the low cycle fatigue and high cycle 

fatigue are obtained. During loading of the specimens at the highest stress amplitude the specimens resembled 

quasi-static fracture with necking usually seen in tensile testing. In our case, the stress amplitude of 72 MPa 

can be considered transient as the failure went from quasi-static fracture to fracture with typical signs of fatigue. 

The 68 MPa stress amplitude appears as a transition from LCF to HCF. Testing at the lowest stress amplitude 

was stopped after 107 cycles without failure of the material so it can be regarded as fatigue limit for this alloy. 

Wrought microstructure was observed using optical microscopy and present phases were identified by EDX 

analysis as Al6FeMn and α-Al12(Fe,Mn)3Si. The microstructure of H12 temper was compared with the same 

alloy in F state. 
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1. INTRODUCTION 

Al-Mn based aluminium alloys are widely used throughout the industry. They are not suitable for highly 

stressed components as their main advantages are good formability, excellent corrosion resistance and 

specific strength rather than ultimate strength. In automotive industry, these alloys are mostly used for 

components in air conditioning as pipelines, condensers, containers, heat shields etc. With growing demand 

on performance of automobiles, the request for cooling also grows. Switching form internal combustion engines 

to electrical engines does not decrease the needs for effective cooling of the components and aluminium alloys 

are considered very effective solution with good cost, low weight and good possibilities for recycling but also 

with a lot of space for further research regarding their mechanical properties and especially fatigue properties. 

This study was focused on fatigue behaviour of the A3003-H12 alloy and fracture surfaces evaluation with 

regard to the number of loading cycles. The microstructure of the specimens was compared with the same 

alloy in F temper. Unlike H12 temper that describes work hardened to quarter hard and not annealed stage, F 

temper is “semi-finished” (otherwise as fabricated) stage with no property limits specified. 

2. METHODOLOGY & EXPERIMENTAL 

The investigation included microstructure analysis, phase analysis, tensile testing, fatigue testing and 

fractographic study of the fracture surfaces after loading with aim to evaluate fatigue behaviour of the alloy in 

H12 temper, to compare the fracture surfaces after low cycle fatigue (LCF) and high cycle fatigue (HCF). The 

alloy in rod shaped specimens was supplied by Hanon Systems Autopal s.r.o. company. In total 5 polished 

specimens of 60 mm overall length, with 30 mm working length and 5 mm working diameter were prepared for 
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the tensile testing and 14 polished specimens with 100 mm overall length, 50 mm working length and 6 mm 

working diameter for fatigue testing. Fatigue loading was carried out using servo-hydraulic single axis pulsator 

INOVA FU-63-930-V1 equipped with PC with TestControl_FU63 software. Tests were performed in load 

control mode using symmetric cycle at 5 levels of stress amplitude – 62, 68, 70, 72 and 76 MPa to obtain 

results for both low cycle fatigue (LCF) and high cycle fatigue (HCF) [1]. The study of fracture surfaces after 

tensile testing and after cyclic loading was performed using JEOL JSM-649OLV scanning electron microscope 

(SEM) equipped with OXFORD INSTRUMENTS INCA x-act tool for EDX microanalysis. Microstructure 

analysis was carried out on selected specimens using Olympus GX51 optical microscope (OM) with DP1 digital 

camera. Grain shape and size were showed after electrolytic colour etching in a solution composed of 5 ml 

48 % HBF4 and 200 ml H2O using Struers Lectropol–5 device. 

3. RESULTS AND DISCUSSION 

Selected specimens were subjected to the microstructure and phase analysis using both OM and SEM. When 

comparing the longitudinal cuts of the tested specimens, small phases elongated and oriented in the forming 

direction can be seen for both H12 and F tempers (Figure 1a and Figure 1c). The cross sections of the 

specimens show similar results with phases and grains having in most cases approximately equiaxed shape 

(Figures 1b and 1d).  

 

Figure 1 Microstructure of the specimens: a) longitudinal section of H12 temper, b) cross section of H12 

temper, c) longitudinal section of F temper, d) cross section of F temper 

The F temper contains fine particles of the similar size to that in H12 temper, but their distribution seems to be 

denser for the H12 temper. The phases observed were analysed using EDX analysis which confirmed the 

presence of α-Al12(Fe,Mn)3Si and Al6(Fe,Mn) particles. The distribution of the phases can be controlled by alloy 

composition and heat treatment so called “6 to alpha” transformation [2, 3], which supports growth of the α-

Al12(Fe,Mn)3Si phase with higher strength, while the Al6(Fe,Mn) particles dissolve. Complete dissolution of the 

phases mentioned is very complicated due to danger of melting at higher annealing temperatures [4]. Both 

phases can affect recrystallisation and precipitation processes and through of this fatigue resistance of the 

alloy. Finding detailed information about the effects of the phases mentioned above on fatigue behaviour of 

the alloy is very difficult. When looking at OM images of colour etched samples, it can be clearly seen that the 

grains have been elongated in the direction of forming as mentioned before (Figures 2a, 3a). The F temper 

shows much more profound deformation of the grains, which can be attributed to the fact, that recrystallisation 

annealing was not applied and the grains remained in deformed state (Figures 3a, 3b). We can also observe 

differences in size of the grains in the H12 temper (Figure 2b). The difference can be caused by thermo-

mechanical history of the H12 temper and possible dynamic recrystallisation processes occurring during 

extrusion [5]. 

a b 

c d 
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Figure 2 Colour etched microstructure of H12 temper: a) longitudinal, b) cross section 

 

Figure 3 Colour etched microstructure of F temper: a) longitudinal, b) cross section 

The yield strength Rp0,2 and ultimate tensile strength Rm obtained by tensile testing (Table 1) are within the 

specifications of the A3003 alloy [6] with approximate yield strength of 117 MPa and ultimate tensile strength 

of 123 MPa. Low difference between Rp0,2 and Rm corresponds with the H12 temper industrial data sheets. 

Table 1 Results of tensile testing for A3003-H12 samples 

Sample Rp0.2 (MPa) Rm (MPa) 

1 116 123 

2 117 123 

3 121 124 

4 118 123 

5 117 123 

Average value 118 ± 1.9 123 ± 0.4 

 
Figure 4 SEM image of fracture surface for the specimen 1 after tensile testing: a) surface with ductile 

dimples, b) detail of remaining phases observed in SEM BEI mode 

a b 

a b 

a b 
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During the tensile testing, all specimens have been deformed with typical necking in the area of final rupture. 

As it can be seen in Figure 4a, fracture surface shows signs of ductile character with dimples and no visible 

grain boundaries which points out to ductile transgranular fracture. The image performed in backscattered 

electrons mode (SEM BEI) shows remaining phases inside the dimples which probably acted as initiation sites 

for the failure (Figure 4b). 

Fatigue testing has been carried out using load control mode and symmetrical cycle of loading at five stress 

amplitudes with 20 Hz testing frequency. Used stress amplitudes were chosen in correlation with [1] to cover 

both LCF and HCF. Results of the tensile testing can be seen in Table 2. 

Table 2Results of fatigue testing for A3003-H12 samples 

Specimen No. σa(MPa) Cycles executed Result 

2 76 9,991 Fractured with necking 

3 76 9,245 Fractured with necking 

4 76 7,551 Fractured with necking 

10 72 14,915 Fractured with necking 

11 72 38,813 Fractured 

12 72 36,563 Fractured 

13 70 39,211 Fractured 

14 70 77,193 Fractured 

1 68 2,754,924 Fractured 

5 68 210,231 Fractured 

6 68 1,265,631 Fractured 

7 62 10,069,149 Unbroken 

8 62 10,169,378 Unbroken 

9 62 10,135,993 Unbroken 

In the column of cycles executed some fluctuation of the results is evident. The widest range of values was 

obtained for the 68 MPa stress amplitude. The most probable cause is some defect in the surface layer, which 

significantly reduced the time (number of cycles needed) for microcracks propagation for the sample 5 or 6. 

Specimens tested at the highest stress amplitude (76 MPa) have been fractured with presence of necking 

similar to the tensile testing, without typical signs of fatigue on the fracture surfaces (Figure 5). The deformation 

of these samples reminds cyclic creep (ratcheting) even without the presence of nominal stress for which the 

ratcheting is typical [7]. 

 

 

 

 

 

 

Figure 5 SEM fractography for the specimen 2 after fatigue loading at 76 MPa: a) general view of the 

fracture surface, b) detail of the surface with two different mechanisms of crack propagation 

a b 
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The stress amplitude level of 72 MPa could be considered transitional as two results were obtained: one type 

of fracture was similar to the ones obtained at the highest stress level amplitude and the second type was 

typical fatigue fracture with radial steps, beachmarks, striations and final overload fracture (Figure 6). 

 

Figure 6 SEM fractography for the specimen 11 after fatigue loading at 72 MPa (LCF): a) general view of the 

fracture surface, b) detail of alternating crack propagation mechanisms 

In this case, the 68 MPa stress amplitude level could be considered as a transition from LCF to HCF with the 

number of cycles in magnitude of 105 to 106. Even though there is massive difference in the number of cycles, 

the fracture surfaces look very similar (Figure 7). This is in accordance with the theory behind the big difference 

in the number of cycles executed. While more than 90% of lifetime of the material during fatigue loading is 

consumed by microcracks propagation, the process of fatigue crack propagation after the initiation is relatively 

fast [8].  

 

Figure 7 SEM fractography for the specimens after fatigue loading at 68 MPa: a) specimen 1 (after 106 

cycles), b) specimen 5 (after 105 cycles) 

Important difference in fracture feature of the specimens loaded at 72 MPa or 68 MPa consists in ratio of 

ductile and brittle fields. Indeed, for the specimen loaded at higher stress amplitude the area of faster crack 

propagation with alternating mechanism of ductile/brittle crack propagation occupies bigger part of the surface 

and the individual marks are bigger and further away from each other. Testing on the lowest stress amplitude 

was ended after 107 cycles without failure of the specimens, therefore in these conditions the stress amplitude 

of 62 MPa can be considered as the fatigue limit for this alloy [9].Microhardness evaluation showed a trend of 

slight increasing hardness with increasing amount of deformation accumulated in the material. Nevertheless, 

the differences in microhardness are relatively small with average HV0.1 values of 48 and 43 for H12 and F 

tempers, respectively. 

a b 

a b 
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4. CONCLUSION 

The study of the mechanical properties and microstructure was carried out for A3003-H12 alloy. The alloy was 

subjected to tensile and fatigue testing. During the tensile testing, specimens have been deformed with the 

presence of typical necking in the area of fracture. Values of the tensile strength obtained correspond with 

specifications of the alloy. During the fatigue loading (LCF) at 72 MPa stress amplitude two results were 

obtained: first with deformation and necking of the specimen similar to the tensile testing and with no marks of 

fatigue on the fracture surface, second with typical fatigue fracture features. Lower stress amplitudes resulted 

in typical fatigue failures with initiation sites, radial steps, beachmarks, striations and final overload fractures. 

The main difference between the LCF and HCF fracture surfaces observed consisted in different proportions 

of the areas with different mechanisms of crack propagation. The lowest stress amplitude of 62 MPa can be 

considered as fatigue limit of the alloy under these conditions as there was no damage observed even after 

107 numbers of cycles. Furthermore, the microstructure and microhardness of H12 and F tempers of the same 

alloy composition were compared. Microhardness values measured for both states showed increasing trend 

relating with thermo-mechanical treatment applied during material processing when F temper proved lowest 

hardness. 
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