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Abstract  

The current appetite for base metals, primary metals resources are being depleted; theneed to recycling waste 

of primary metallurgy such as slag is on the rise. This study investigates the recovery of Ge, Cu and Co with 

ferrosilicon addition from Ge-copper bearing slag from STL/Gecamines in the Democratic Republic of Congo 

during carbothermic reduction and sulfurization.  Characterization was conducted using XRF, XRD and SEM-

EDS while a bench scale alumina tube furnace was used for the experiments. Coke was used as reductant 

while calcium sulfate (CaSO4-high purity) was added for sulfurization. Graphite crucibles were used for the 

experiments and the furnace set for 1400 °C using Eurotherm temperature controller. To limit the interaction 

between the graphite crucible and the slag, CO was blown in at 0.01 l/min. Products were characterized using 

XRD coupled with Origin 8.5 software and SEM-EDS. Results have revealed that Cu, Co and Ge were 

displaced to a matte phase. However, the displacement of Ge from the silicates matrix to the metallic phase 

was observed. The formation of CuGeFe, CoFe, CuS, FeS and some Cu were present in the metallic phase 

when FeSi increased in presence of CaSO4 whereas more amorphous slag was produced due to high silica 

content.  
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1. INTRODUCTION 

Slags produced in pyrometallurgical processes are promising sources of metals. A huge amount of it is 

generated each year worldwide [1,2]. The generated copper slag contains valuable metals due to mechanical 

entrapment of fine and dispersed matte or/and due to their dissolution in slag as oxides chemically bound with 

silica in fayalite as lattice substituents such as germanium [3-7]. Therefore, copper slag can be considered as 

a secondary source for metals recovery [8].  

Different studies have been conducted on recovery of valued metals from copper slag using different 

approaches [9]. However, the approach chosen on the composition, present form of targeted precious metals 

and economics involved. Hence, pyrometallurgy has been the most used approach for reduction and 

sulfurization of metal oxides contained in the slag because of other techniques limitations [7] 

Germanium is less abundant in the Earth’s crust with an occurrence ranging between 1–7 ppm. It occurs 

associated with many elements forming known minerals of Germanite and renierite and Ge oxide [10]. 

Germanium use is mostly the manufacture of semiconductors. New applications in novel and high demand 

technological industrial have improved its price. This has lead process materials with low germanium contents 

and significant amounts of other values [11].  

Previous studies have exposed diverse secondary sources of germanium but to our knowledge, the recovery 

of germanium in oxide phase from copper slag has not been done [7,12-15]. 
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Previous study has proposed a carbothermal reduction of germanium oxides [15] while another investigation 

have shown that the reduction need a high temperature with a very high risk of producing germanium monoxide 

vapor [16]. Hence, the current study investigated the carbothermal reduction of germanium bearing copper 

slag with the addition of ferro-silicon for germanium dioxide reduction and germanium displacement to the 

matte. 

1.1. Thermochemistry prediction 

Ferrosilicon is added to support the reduction of germanium dioxide. The Ellingham diagram below has been 

generated using HSC 9 chemistry software by considering possible reactions between germanium dioxide and 

some added agents up to 1400 °C.  

 

Figure 1 Reduction and sulfurization of GeO2 (Drawn using HSC 9) 

The reactions show that germanium dioxide can be reduced at different rate with silicon and iron from ferro-

silicon and the reducing agent carbon. Silicon is the strongest reductant due the lowest energy needed to form 

germanium or even germanium sulfide in sulfurization at 1400 °C. Germanium dioxide will be reduced by 

carbon, but this process needs higher energy to produce Ge and CO even very higher energy to produce CO2 

at 1400 °C in both reduction and sulfurization steps when compared to the reactions with silicon. the reactions 

germanium dioxide with Iron from ferro-silicon is the least to occur in the system. The Gibbs energies are too 

high or very close to positive values. Reactions (1) to (8) illustrate. 

Gibbs free energies at 1400 °C indicate that the formation of germanium sulfide is more feasible using 

silicothermic process in presence of calcium sulphate. The reaction leads to the formation of germanium sulfide 

that reports to the metallic phase accompanied by the formation of CaO and SiO2 which report to the slag. 

However, it transpired that adding carbon as reducing agent in absence of silicon also enhances the formation 

of germanium sulfide but required a bit more energy than the silicothermic process. It must be noted that the 

carbothermic process, although easily feasible than the reduction of GeO2 by iron, it remains less 

recommendable than the silico thermic process doubled with the addition of calcium sulphate. This is explained 

by the higher energy required by the carbothermic reduction. However, the amount of carbon needed is higher 

than where carbon monoxide is produced leading to the reaction producing GeS and CO2. Finally, the reduction 
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and sulfurization of germanium dioxide is very difficult where iron becomes the reductant. This order is followed 

whether metallic germanium or germanium sulfides are obtained. Therefore, iron from ferro-silicon will only 

play the role of collecting the reduced germanium and will both sulfurize to the matte with SO2 from CaSO4. 

Chemical reactions of GeO2 and Gibbs free energy 

GeO2 + 2.5 Si + CaSO4 = 2.5 SiO2 + GeS + CaO -991.6 kJ/mol (1) 

GeO2 + Si = SiO2 + Ge -335.1 kJ/mol (2) 

GeO2 + 2.5 C + CaSO4 = 2.5 CO2 + GeS + CaO -446.0 kJ/mol (3) 

GeO2 + 5 C + CaSO4 = 5 CO + GeS + CaO -747.7 kJ/mol (4) 

GeO2 + C = CO2 + Ge -137.1 kJ/mol (5) 

GeO2 + 2 C = 2 CO + Ge -557.7 kJ/mol (6) 

GeO2 + 5 Fe + CaSO4 = 5 FeO + GeS + CaO -230.6 kJ/mol (7) 

GeO2 + 2 Fe = 2 FeO + Ge - 51.0 kJ/mol (8) 

However, the sulfurization dependent on the amount of SO2 in the system as shown in the Figure 2 bellow. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Calculated Ge-O-S system using HSC 9 chemistry software  

The decomposition of germanium dioxide to germanium occurs at around 750 °C when the log pSO2 is 

maximum around -8 whereas it gets sulfurized at temperature starting at minimum 750°C in presence of SO2. 

The formation of germanium sulfides occurs at around 600 °C in the presence of high SO2. This rises the 

expectation of forming germanium sulfide in a medium where sulfur would be available to react. Therefore, 

GeS is expected to report to the matte. However, SO2 content will remain constant because it comes CaSO4 

which was added to keep constant the basicity at 0.7. This is also supported by the fact that primarily the 

vessel being open on top SO2 my easily escape because its residence time is low. Also, the presence of other 

metal oxides in the raw slag besides copper oxides and iron oxides may react to form sulfides before 

germanium dioxide and start consuming SO2. Overall, the Gibbs free energy change of different reactions 

support the sequence of reactions based on their level of energy requirements. 

Ge – O – S system log p(SO2) 

(g) 

T (°C) 
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2. METHODOLOGY 

2.1. Material  

The copper slag sample used in the current study was donated by the Societe de Terril de Lubumbashi (STL). 

The slag was produced decades ago from a water-jacket furnace producing copper matte by Gecamines, in 

Lubumbashi, in the Democratic Republic of Congo. The FeSi and Ca2SO4 were provided by the Department 

of Metallurgy, University of Johannesburg. Ca2SO4 was used as sulfurizing agent and also to adjust the basicity 

to 1 since the slag was fayalitic. 

2.2. Experimental procedure 

The head samples were made of 4.5 g of carbon and CaSO4 to 0.7 g, FeSi varied from 0.005 to 0.008 g with 

0.001 g increment. CO was blown in the alumina tube furnace at a rate of 0.001l/ min. Graphite crucibles were 

used for the experiments. From room temperature to 600 °C argon was blown in the furnace then switched to 

CO up to 1400 °C. The samples were kept at 1400 °C for two hours and the furnace was switched-off to cool 

down while CO was still blown in until the furnace reached 600 °C then CO was switched-off and argon 

switched-on until room temperature was reached. The cold sample was collected and characterized. XRF, 

XRD and SEM were used for characterization.   

3.  RESULTS AND DISCUSSION  

3.1. XRF of the raw slag  

Iron oxides and silicon dioxide are the most abundant components indicating the presence fayalite containing 

copper, zinc and cobalt. This also make the copper slag amorphous and acidic.  

Table 1 Chemical composition of raw slag [17] 

Comp. Fe Cu Co Zn SiO2 CaO Al2O3 MgO 

wt% 38.3 4.60 1.44 2.99 30.4 17.7 6.12 4.77 

3.2. XRD of the raw slag  

The XRD analyses of the raw sample slag is presented in Figure 3. Orign 8.5 software was used to identify 

overlapping peaks.XRD pattern has revealed no peaks indicating a dominance of amorphous SiO2 as revealed 

by the XRF forming fayalite phase. The slag composition comprised cobalt oxide, copper aluminate spinel, 

jacobsite, magnesioferrite, magnetite, pyrite and zincite.  

Based on the list of phases depicted from Figure 3 it transpired that either the oxygen potential was 

considerably high, or the amount of silica added did not fully assist in avoiding the formation of magnetite. 

Although the addition of silica did not stop the formation of some magnetite, the presence of fayalite confirms 

that the addition of silica has however limited the formation of magnetite at this stage. The presence of jacobsite 

in the slag, spinel phases also enjoy the explanation of the limitation of the formation of magnetite. This 

confirms the dissolution of other elements in the Fe2O3 matrix. It should, however, be noted that the oxidized 

iron should be low compared to iron that reported to the matte. Further, the presence of pyrite is and indication 

that some mattes were entrained or trapped in the slag when the slag was tapped while zincite confirms the 

presence of zinc sulfides in the ore that was used and most probably got oxidized during sintering of 

chalcopyrite prior the reverberatory furnace.  Cobalt oxide has presumably entered the reverberatory furnace 

as oxide and did not take part in any reaction during copper matte production and reported to the slag.  
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Figure 3 Phases present in the raw slag  

3.3. SEM-EDS of raw slag 

Figure 4 presents results obtained using SEM-EDS as analytical technique. Results show atom percentage 

of different element that are the sample. Four points were analyzed based on the color and morphology of the 

particles.   

  

Figure 4 SEM-EDS of raw slag 

Element  
at % 

1 2 3 4 

O 47.3 48.6 55.1 1.2 

Mg 3.0 3.1 2.4 0 

Al 2.5 3.5 2.2 0 

Si 14.6 16.7 9.6 0 

P 0.3 0 0 0 

S 0.2 0 0 0 

K 0.3 0.6 1.7 0 

Ca 7.5 6.2 2.0 0 

Ti 0.2 0.3 0.3 0 

Fe 19.7 14.9 0 0.5 

Co 1.7 1.8 0 0 

Cu 0.7 0.6 7.0 98.2 

Zn 1.9 3.5 14.2 0 

As 0 0 1.3 0 

Pb 0 0 4.2 0 
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The spectra revealed the complexity of the chemical composition of the raw slag as the head sample. It is 

observed that silicon and iron are the most abundant elements in the sample in oxide form. This informs the 

presence of abundant silica in the slag. This confirms and is in line with results obtained with XRD. The XRD 

spectra have shown that the sample was amorphous due to the presence of silica. The amount of iron in the 

sample is an indication that iron is either present as fayalite, magnetite, spinel phases, pyrite or 

magnesioferrite. Very little iron sulfide is oxidized and slagged: the furnace slag consists mainly of the cleaned 

(settling of matte droplets) converter slag, which is returned molten to the furnace. It is a confirmation of the 

results obtained through XRD. The explanation of the formation of the above-mentioned phases remained the 

same as supported by XRD spectra. The presence of aluminum is a confirmation of aluminate spinel depicted 

with XRD while copper, calcium, zinc and cobalt are present as oxides.  

3.4. XRD of smelted samples  

Figure 5 depicts phases formed at 0.005 g and 0.006 g FeSi. The spectra presented show the influence of 

FeSi and CaSO4 in a reducing atmosphere at 1400 °C.  

 

Figure 5 XRD results of the matte produced with 0.005 g and 0.006 g of FeSi addition 

It is found that different sulfide phases containing Fe, Cu and Ge have formed. From the thermodynamic study 

conducted in Figure 1 it was predicted that at 1400 °C, the formation of germanium sulfide was possible in a 

reducing atmosphere. The presence of germanium sulfide in the smelted samples enjoys the thermodynamic 

predictions. However, an increase in FeSi has led to freeing Ge. This can be due to the displacement of Ge 

by Si from the silicate matrix. The explanation is found in the fact that Ge and Si are of same atomic size with 

Ge being siderophile. Ge is therefore attracted by iron while Si has more affinity to oxygen than Ge and 

replaces Ge in the silicate matrix.  Also, the presence of Ge in the metal signifies that pSO2 was very low as 

predicted with HSC 9 in Figure 2. However, the presence CuFeS, CoFeS preferentially got sulfurized while 

FeS might either be from the head sample or got sulfurized. The reported CoFe is a result of carbothermic 

reduction of their respective oxides from the head samples. The increase of FeSi has decreased CuS, FeGeS 

and favored the formation of CuFeS. 

Figure 6 depicts phases formed at 0.007 g and 0.008 g FeSi added. These results are compared to the results 

obtained with 0.005 g and 0.006 g FeSi addition.  



May26- 28, 2021, Brno, Czech Republic, EU 

 

 

 

Figure 6 XRD results of the matte produced with 0.007 g and 0.008 g of FeSi addition 

From Figure 6 it transpired that phases that formed are similar to those obtained with 0.005 and 0.006 g FeSi. 

However, a few displacements were observed. For germanium, further increase of FeSi showed that during 

smelting Ge, CoFeGe and FeGe became unstable and CuGeFe was favored. This could be due to the 

chalcophilic behavior of cupper being higher than that of cobalt. However, contrary to what was observed at 

lower FeSi addition in Figure 5, further increase of FeSi stabilizes CuS while CoFe becomes more stable due 

to high Fe content. The so-called trio FeCoNi supports the behavior similarity of the three elements. The 

formation of CoFeS enjoys the FeCoNi statement in presence of CaSO4. It was however expected to form 

more sulfides phases, but that was not the case. This could be due to short residence time of SO2 in the 

furnace. After the decomposition of CaSO4, SO2 easily escapes from the furnace, hence less contact time with 

the head sample. This leads to less contact time between the gas and the solid particles.    

3. CONCLUSION 

Experiments conducted in this study aimed to explore the influence of ferro-silicon addition on the carbothermic 

reduction of Ge-Copper bearing slag. XRF, XRD and SEM-EDS used to characterize the raw slag which has 

shown no germanium trace and a fayalitic copper slag. Thermodynamic predictions using HSC 9 software 

were in line with the results obtained.  Results have revealed that under reducing conditions at low p(SO2) Ge 

was stabilized but became unstable when FeSi increased. Further increase of FeSi to 0.0008 g; Ge, CoFeGe 

and FeGe became unstable and CuGeFe was favored.  Also, it was found that FeSi stabilized CuS and CoFe 

while less sulfide phases were attributed to short residence time of SO2 in the furnace. The overall observation 

has shown that the use FeSi in addition to CaSO4 in reducing conditions it is possible to recover base metals 

in an alloyed form.  
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