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Abstract 

This investigation was carried out to determine the wetting characteristics of low alloy steel grades that 

contained, among other elements, chromium around 5 wt.% and oxygen up to approximately 400 ppm. The 

tests were performed from the melting temperature to a temperature of 1,600 °C using a high-temperature 

observation furnace CLASIC operating under non-oxidizing conditions. The influence of oxygen on the 

examined steel's wetting behavior, i.e., the temperature dependence of surface tension and wetting angle, was 

found and verified by statistical analysis using the Kruskal-Wallis test. In addition, the phase transition 

temperatures, ascertained from DTA measurements, were in strong correlation with those theoretically 

calculated. To provide better insight into the wetting mechanism, SEM/EDX analyses of the wetted alumina 

surface and of the vertical cross-section of the steel/alumina interface were made using a scanning electron 

microscope (SEM) JEOL 6490 LV. Beyond the mentioned techniques, the study was accompanied by 

calculations performed in FactSage oxide database. 
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1. INTRODUCTION 

The low-alloy steels belong to a group of ferrous materials containing alloying elements in an amount less than 

that of stainless steels (<10%) and greater than 2.07% [1]. It is a wide variety of steel grades with specific 

challenges concerning fabrication, welding, and application. This requires, among others, detailed knowledge 

of their metallurgical structure, thermodynamic, rheological, and surface properties. Their mechanical 

characteristics and resistance to rust are better compared to plain carbon steels. Those based on chromium 

and molybdenum series are important due to their creep-resistant level, high-temperature proof strength, and 

impact/toughness resistance [2,3]. The addition of chromium and nickel improves thermal stability and impairs 

corrosion resistance, making these steels popular for applications exposed to elevated temperatures without 

getting too hot [4]. Besides, low alloy steels are used mainly in the nuclear industry for cooling and piping 

systems, containers, structural materials, and rebars in concrete [5]. 

As outlined above, surface properties (surface tension in particular) are among the industry's key 

characteristics. Surface tension is a physical force arising from the fact that bulk atoms interact with 

surrounding atoms gaining zero net force, contrary to the surface atoms subjected to a net inward force from 

the neighbor atoms. Regarding a multicomponent alloy, atoms whose energy state is affected negligibly by the 

surface are preferably segregated in the surface. Oxygen is strongly surface-active, and its energy changes 

concerning segregation are relatively large compared to most metals. In other words, it influences the surface 

tension on a grander scale [6,7]. For molten iron, the oxygen partial pressure around 0.01 Pa decreased the 

surface tension by several percent, changed the surface tension temperature coefficient from positive to 

negative, and altered the course of surface tension temperature dependence to a boomerang - like shape [8]. 
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Similar results were achieved by Morohoshi et al. when the oxygen activity was controlled between 10-12 and 

10-10 and carbon activity was kept at 10-3 [9]. Looking at more complicated systems, oxygen acts as a surface-

active element, mainly reducing surface tension, thus respecting the isothermal dependence of surface tension 

on oxygen activity [10]. It is also worth underlining that, for polycomponent steels, the surface properties are 

hard to model, and therefore these properties can be obtained primarily by experiment [11]. 

In this study, we have assessed the effect of oxygen and temperature on the surface tension of low-alloyed 

steels varying in oxygen content. Furthermore, we also focused on the interactions between steel and 

corundum substrate and, in particular, on the wetting mechanism. 

2. EXPERIMENTAL RESEARCH 

2.1. Preparation of alloy samples 

Three alloy samples, the composition of which is listed in Table 1, were measured by the sessile drop method 

to determine the surface properties. The samples were cylindrical (5 mm diameter x 5 mm height) and, before 

the experiment, they were mechanically cleaned and washed in acetone. The corundum substrates (dense 

alumina, 98 wt.% Al2O3) were pretreated by heating at 1,150°C for 6 hours, and shortly before the wetting test, 

they were cleaned with acetone. 

Table 1 Composition of steel samples 

Sample 
O Cr Co S P C Ni N 

(ppm) (wt.%) 

1 236 4.645 0.023 0.006 0.004 0.003 0.002 0.002 

2 317 4.553 0.027 0.006 0.005 0.002 0.003 0.003 

3 367 4.386 0.009 0.007 0.003 0.003 0.002 0.002 

The content of other elements Si, Al, Cu, Ti, Mo, V and B was less than 10 ppm, approximately 95 % remainder 

corresponds to iron. 

2.2. Wetting tests 

The tests were performed in the observation furnace Clasic starting from laboratory temperature to 1,600 °C 

with a heating rate of 5 °C·min-1. After sealing, the furnace was evacuated to approximately 0.1 Pa and washed 

with argon (> 99.9999%). An inert atmosphere of argon was maintained during the measurement to prevent 

oxidation of the sample. A camera CANON EOS 550D took the images of sitting melted droplets. For further 

details, see article [12].  

2.3. Experimental methods 

The semiquantitative X-ray microanalysis was performed using a scanning electron microscope JEOL 6490LV, 

equipped with EDX analyzer INCA in the mode of backscattered electrons. The experiments were performed 

with settings: thermo-emission cathode LaB6, voltage 20 kV, resolution of 3.0 nm, low vacuum. XRD (X-ray 

powder diffraction) was carried out by a Bruker-AXS D8 Advance diffractometer with CuK filtered radiation, 

voltage 40 kV, current 40 mA, step by step mode of 0.014° 2Θ, total time on step 25 s, and angular extent 5–

80° 2Θ. This device operates with Bruker AXS Diffrac, Bruker EVA, and Bruker Topas software. DTA 

(Differential Thermal Analysis) experimental measurements were made by Setaram Setsys 18TM instrument 

equipped with S-type thermocouples and at a heating rate of 10 °C min−1 under an inert atmosphere of argon. 

Liquidus temperatures were corrected considering the heating rate and sample mass. Interaction between 

steel and corundum substrate and phase growth depending on temperature were calculated using FactSage 

7.2 with databases FToxid, FSsteel and FactPS. 
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3. RESULTS AND DISCUSSION 

1.1. Wetting tests 

Figure 1 depicts the temperature dependence of steel surface tension. Samples showed a moderate increase 

in surface tension with temperature. In other words, the temperature coefficient of surface tension was positive 

(Table 2). This is related to the sulfur contents that are equal to or greater than 60 ppm. Furthermore, it is 

evident that oxygen affected the surface tension, i.e., with increasing oxygen content, the surface tension 

decreased. 

  

Figure 1 Surface tension as a function of 

temperature 

Figure 2 Boxplot of oxygen effect on surface 

tension within temperature range 1,550 - 1,600 C 

Regarding the surface tension, the measured data were normally distributed as proven by Shapiro-Wilk test. 

All linear models (see Table 2) were statistically significant at the significance level of 5% (F-test). According 

to Kruskal-Wallis test, the oxygen influenced the surface tension (p << 0.001), i.e., the differences in surface 

tension were statistically significant at all observed oxygen levels. This is also evidenced by the corresponding 

boxplot (Figure 2). 

Table 2 Linear parameters of surface tension temperature dependence 

Sample Tref (°C) σref (mN·m-1) dσ/dT (mN·m-1·°C-1) ΔT (°C) Tl DTA (°C) Tl FS (°C) 

1 1,550 1,355.3 543.3·10-3 1,550 - 1,600 1,527 1,528 

2 1,550 1,163.5 1,717.9·10-3 1,550 - 1,600 1,527 1,529 

3 1,550 1,095.8 1,852.3·10-3 1,550 - 1,600 1,528 1,529 

Using equation (1), the surface tension can be expressed as a function of temperature. Calculated parameters 

are listed in Table 2. 

𝜎(𝑇) = 𝜎𝑟𝑒𝑓 +
𝑑𝜎

𝑑𝑇
∙ (𝑇 − 𝑇𝑟𝑒𝑓)             (1) 

where σref (mN·m-1) is surface tension at reference temperature Tref (°C), and dσ/dT (mN·m-1·°C-1) denotes 

temperature coefficient of surface tension. 

The temperature dependences of the wetting angles are in Figure 3, pointing out that there was only a very 

slight dependence on the temperature, and, in the case of sample 2, almost none. Moreover, as the oxygen 
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content of the steel increases, the wetting angles decreases. Figure 4 shows images of sample 2 assembly 

at certain temperatures, including wetting angles at 1,500 °C and 1,600 °C. 

  

Figure 3 Average wetting angle depending on 

temperature 

Figure 4 Images of sample 2 resting on alumina 

substrate at selected temperatures A) 1,500 °C, B) 

1,530 °C, C) 1,550 °C, D) 1,600 C 

Steel liquidus temperatures were determined experimentally by the DTA method (Tl DTA) and subsequently 

compared with theoretically calculated using the FactSage software (Tl FS), with a high agreement (see 

Table 2). 

1.2. Mechanism of wetting 

After the wetting test, the diffraction patterns of the substrate corresponding to sample 2 showed a split in 

corundum diffraction lines referring to two corundum phases of different lattice parameters. The more intensive 

corundum phase is the normal corundum, while the second is Cr doped corundum causing a violent tint at the 

point of contact with steel [13]. No other phases were found (Figure 5). 

 

Figure 5 XRD analysis of corundum substrate after wetting test of sample 2 

To elucidate the wetting mechanism and deeply investigate the interactions occurring at the phase interface, 

we performed a FactSage simulation of the sample 2 arrangement (Figure 6). As regards the steel, the 

dominant phases were FCC and BCC steel matrices up to approximately 1,520 °C when they were swiftly 

suppressed by a liquid phase reaching a maximum at 1,529 °C. Besides, the formation of various oxides, 

carbides, and sulfides also occurred at a broad temperature range but to a much lesser extent. On the other 
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hand, in the case of corundum substrate, the evolution of phases was more intriguing. The most abundant was 

corundum, which was altered in favor of calcium aluminosilicate, melilite, and hibonite, beginning at < 500 °C, 

735 °C, and 1,110 °C, respectively. Even though hibonite concentration was more prominent than 10 wt. %, it 

was not detected by XRD and EDX analyses like the other two mentioned phases. Of particular interest is the 

partial melting of the substrate surface at temperatures above 1,425 °C which could affect the wetting. 

Additionally, garnet was present until the temperature of 735 °C. 

 

Figure 6 Interaction between alumina substrate and sample 2 calculated using FactSage 7.2 

Moreover, the SEM analysis was carried out to characterize the microstructures of steel–corundum couple. 

Due to the higher oxygen content in the investigated steels, chromium, a relatively weak deoxidant, formed a 

fine ragged chromia layer on the droplet surface (Figure 7A) [14], which prevented the formation of a droplet 

in the early stages (Figure 4B). For this reason, the temperature dependences of the surface tension and the 

wetting angles are given only as from 1,550 °C. The area of corundum substrate around the drop remained 

unchanged except that Fe, Cr-rich small-sized particles were observed there (Figure 7B). As for the area 

under the droplet, the corundum substrate was partially melted (Figure 7C), bearing identical steel particles. 

 

Figure 7 SEM images of sample 2 assembly. A) free droplet surface, B) unwetted area, C) wetted area 

If we combine the results presented so far in this section, it can be assumed that non-reactive or inner wetting 

occurred during the experiments [15]. 
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4. CONCLUSION 

In this work, the wetting of alumina substrate by chromium steel with higher oxygen content was analyzed, and 

the results can be summarized as follows:  

• The surface tension of the investigated steels increases slightly with temperature and decreases with 

increasing oxygen content of steels.  

• The wetting angles were almost independent of the temperature within the given temperature range 

(1,550 °C and 1,600 °C) and decreased with increasing oxygen content. 

• The higher oxygen content (up to nearly 400 ppm) caused the formation of a thin chromia layer. This 

limited the determination of surface properties by the sessile drop method.  

• The results of SEM and XRD analyzes confirmed non-reactive wetting. Only chromium-doped corundum 

was found on the corundum surface under the drop. The structure of the remaining surface area has 

not changed. 
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