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Abstract 

Activation energy at hot deformation represents a valuable physical quantity which finds its application e.g. in 

the case of a hot flow stress description. It has been showed that this quantity can be treated as a material 

constant, strain-dependent variable or even as strain, strain rate and temperature dependent variable. A 

mathematical description of the last and in the same time the most complicated dependency is the aim of the 

presented paper. Two mathematically different methodologies have been applied to cope with this issue – a 

multivariate polynomial relationship and an artificial neural network approach. The results have shown that the 

neural network approach represents an ideal one although the polynomial one is also applicable.  
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1. INTRODUCTION 

Since the 20th century, so-called hot deformation activation energy, Q (J⋅mol−1), has been being applied for a 

description of hot flow curve (stress-strain) datasets which are usually experimentally acquired under various 

combinations of temperature and strain rate, i.e. curve fitting issue. This valuable physical quantity is 

predominantly treated either as a material constant (i.e. strain, strain rate and temperature independent) or as 

a strain-dependent variable. In the first case, the Q is used for a mathematical description of significant flow 

curve points, i.e. a peak point, steady-state beginning or even dynamic recrystallization inception. Described 

coordinates of these significant points are then usually substituted as auxiliary variables into the flow stress 

models to fit an entire flow curve dataset – so the Q is for the flow curve fitting applied indirectly (through the 

previous description of the significant flow curve points). In the second case, however, the Q is employed for 

the flow curve fitting issue directly since it is considered to be strain dependent – this dependency is usually 

expressed via polynomial equations [1,2]. Nevertheless, some previous studies [3,4] have pointed out on the 

fact that the activation energy is actually dependent not only on the strain but also on the temperature and 

even strain rate. Naturally, there were attempts to embrace such dependency for an enhancement of current 

flow curve fitting solutions. Hand in hand with these efforts there were, of course, endeavors to mathematically 

describe the dependency of Q on the strain, strain rate and temperature – practically solved only via multiple 

cooperating bivariate polynomials [3,4]. The aim of the submitted research is then introduce two new 

approaches which should bring an alternative possibility to cope with the Q-dependency complexity – a 

multivariate (specifically single trivariate) polynomial approach and an artificial neural network (ANN) one.   

2. EXTRACTION OF EXPERIMENTAL ACTIVATION ENERGY VALUES 

In order to demonstrate the above-mentioned approaches, an experimental hot-compression flow curve 

dataset of the manganum-vanadium steel has been selected. Experimental conditions are as follows: 

deformation temperatures of 1123, 1273, 1373, 1473 and 1553 K, strain rates of 0.1, 1, 10 and 100 s−1, and a 

true height strain reaching to 1.0. Laboratory details have been published previously in [5].    
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The selected hot-compression flow curve dataset has been subsequently utilized to gain experimental  

Q-values under all tested circumstances, i.e. Q(ε,ε̇,T) (J⋅mol−1), via a regression analysis of the well-known 

Garofalo’s relationship [6] – see equations (1) and (2) [7]:  
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In these equations, σ (MPa), ε (-), ε̇ (s−1) and T (K) represent a flow stress, true strain, strain rate and 

temperature, respectively. R (8.314 J⋅K−1⋅mol−1) is the universal gas constant, α(ε,T) (MPa−1) and α(ε) (MPa−1) 

are a strain-temperature dependent and only-strain dependent stress multiplier, respectively [7]. 

3. MULTIVARIATE POLYNOMIAL APPROACH  

In previously published studies (see e.g. [1]), a univariate polynomial expression [8] was successfully employed 

in order to fit a dependency between the activation energy and true strain. Since the activation energy is in the 

current research considered to be dependent also on the temperature and strain rate, a multivariate 

(specifically trivariate) polynomial expression has been proposed to cope with this approximation issue – its 

general form is expressed via the following equation: 

𝑄(𝜀, 𝜀̇, 𝑇) = ∑ ∑ ∑ 𝑎𝑖𝑗𝑘 ⋅ 𝑇𝑖 ⋅ ln𝑗 𝜀̇ ⋅𝑛
𝑘=0

𝑛
𝑗=0

𝑛
𝑖=0 𝜀𝑘 (3) 

In equation (3), aijk (-) represent material constants, where i = [0, n] ⊂ ℕ0, j = [0, n] ⊂ ℕ0 and k = [0, n] ⊂ ℕ0. 

While an ideal polynomial order, n (-), was being found on the basis of a trial and error method, corresponding 

material constants were being calculated via the least squares method [9] in the Octave-4.2.1 programming 

environment [10]. Results have showed that an ideal order is equal to 3, i.e. the equation (3) represents a 

tricubic polynomial – fitting constants are displayed in Table 1.  

Table 1 Material constants of the tricubic polynomial – equation (3)  

aijk Value aijk Value aijk Value aijk Value 

a000 6.12⋅10+03 a100 −1.24⋅10+01 a200 8.73⋅10−03 a300 −2.05⋅10−06 

a001 2.30⋅10+04 a101 −4.09⋅10+01 a201 2.60⋅10−02 a301 −6.07⋅10−06 

a002 6.24⋅10+04 a102 −1.43⋅10+02 a202 1.03⋅10−01 a302 −2.32⋅10−05 

a003 −6.61⋅10+04 a103 1.44⋅10+02 a203 −1.01⋅10−01 a303 2.26⋅10−05 

a010 7.23⋅10+02 a110 −1.46⋅10+00 a210 1.01⋅10−03 a310 −2.34⋅10−07 

a011 −1.00⋅10+04 a111 2.02⋅10+01 a211 −1.39⋅10−02 a311 3.23⋅10−06 

a012 1.92⋅10+04 a112 −3.87⋅10+01 a212 2.67⋅10−02 a312 −6.21⋅10−06 

a013 −1.00⋅10+04 a113 2.02⋅10+01 a213 −1.40⋅10−02 a313 3.27⋅10−06 

a020 6.68⋅10+01 a120 −1.47⋅10−01 a220 1.07⋅10−04 a320 −2.61⋅10−08 

a021 −6.01⋅10+02 a121 1.35⋅10+00 a221 −9.83⋅10−04 a321 2.37⋅10−07 

a022 8.55⋅10+02 a122 −2.03⋅10+00 a222 1.52⋅10−03 a322 −3.73⋅10−07 

a023 −2.11⋅10+02 a123 6.09⋅10−01 a223 −4.95⋅10−04 a323 1.27⋅10−07 

a030 −2.31⋅10+01 a130 5.10⋅10−02 a230 −3.69⋅10−05 a330 8.92⋅10−09 

a031 5.28⋅10+02 a131 −1.11⋅10+00 a231 7.81⋅10−04 a331 −1.85⋅10−07 

a032 −1.04⋅10+03 a132 2.19⋅10+00 a232 −1.55⋅10−03 a332 3.70⋅10−07 

a033 5.42⋅10+02 a133 −1.15⋅10+00 a233 8.18⋅10−04 a333 −1.96⋅10−07 



May 26 - 28, 2021, Brno, Czech Republic, EU 

 

 

4. ARTIFICIAL NEURAL NETWORK APPROACH 

Based on the previous successful implementations of an artificial neural network approach [11,12] into the flow 

curve fitting process [7], a multi-layer feed-forward neural network [12] has been employed as an alternative 

to the above-mentioned multivariate polynomial approach. While an ideal network architecture was being found 

on the basis of a trial and error method, corresponding synaptic connections of artificial neurons were being 

calculated via the Levenberg-Marquardt algorithm [13,14] cooperating with the Bayesian regularization [15,16] 

under backpropagation of error signal [17]. It should be noted, fourteen T-ε̇ combinations have been used for 

the synaptic connection calculations while the rest of the dataset (i.e. six combinations) served for the 

subsequent testing of overfitting issue [12]. The described ANN solution has been realized under the Matlab 

9.3 [18] programming environment with the embedded Neural Network Toolbox 11.0 [12]. An ideal network 

architecture is schematically displayed in Figure 1 and the corresponding legend is available in Table 2.  

 

Figure 1 Block diagram of the utilized ANN architecture 

Table 2 Legend of the block diagram in Figure 1    

Symbol Meaning Symbol Meaning 

Tn (-) T-vector normalized via a prestd [12] b (-) Bias vector [12] 

ε̇n (-) ε̇-vector normalized via a prestd [12] ∑ (-) Weighted sum [12] 

εn (-) ε-vector normalized via a prestd [12] tansig Hyperbolic tangent sigmoid transfer function [12] 

Q (J·mol−1) Q-vector purelin Linear transfer function [12] 

w (-) Synaptic weight matrix [12]   

5. RESULTS AND DISCUSSION 

Figures 2 and 3 offer a view on the Q-ε course under various thermomechanical conditions. At the first sight 

it is evident that the activation energy is predominantly influenced by the strain and temperature level. The 

temperature influence is clear – the Q-level is decreasing with the increase of temperature. The strain 

dependency is, however, quite tricky. The Q-ε curves (Figure 2) show under lower temperature levels behavior 

similar to the course of flow curves – see the intensive growth up to the global maximums (peaks) and 

subsequent gradual decrease. Another common feature is the earlier peak occurrence under lower strain rates 

and subsequent transition to steady-state. Similar flow-stress-like behavior has been observed e.g. in [7]. 

Nevertheless, the trends observed under lower temperatures are not in accordance with those observed under 

higher temperatures – Q-ε curves seem to be mirror-inverted – they show a global minimum. Either way, the 

gained experimental Q-ε curves have been successfully described via both above proposed approaches – see 

the solid and dashed lines corresponding with the ANN and polynomial approach, respectively (Figure 2).  
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In addition, there is a prediction for two additional combinations of temperature and strain rate (gray curves) in 

order to verify a prediction capability. Despite of the good description via both approaches, the ANN one 

evidently exhibits the highest curve fit – the utilized tricubic polynomial relationship is not able to fit the 

experimental data with such precision. Note, the 3rd polynomial order has been chosen as the best choice 

since lower and even higher orders exhibited much higher deviations.     

 

Figure 2 Comparison between the tricubic polynomial and ANN description; boxes – experimental  

data, solid lines – ANN, dashed lines – tricubic polynomial, color curves – approximation,  

gray curves – prediction 

 

Figure 3 Volumetric expression of the activation energy evolution 
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Figure 4 graphically expresses a statistical point of view on the applied approximation approaches. The 

compiled histograms offer a distribution of a relative percentage error, η (%) [19], corresponding mean value, 

μ (%) [20] and standard deviation, σ (%) [21]: 

𝜂𝑖  =
𝑇𝑖−𝐴𝑖

𝑇𝑖
⋅ 100 (4) 

𝜇 =
1

𝑛
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𝑛
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𝜎 = √
1

𝑛
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The variables Ti (J⋅mol−1) and Ai (J⋅mol−1) symbolize the values of the target (experimental) and approximated 

Q-vectors, respectively, where i = [1, n] ⊂ ℕ for n corresponding with the number of vector elements. At the 

first sight it is obvious the η-values related to the ANN approach (Figure 4b) are distributed in a narrower 

range (ranging from −4 to 6 %) than that corresponding with the tricubic polynomial relationship (Figure 4a) 

(ranging from −10 to 8 %) – a dispersion of the tricubic polynomial η-deviations is thus evidently higher. Another 

fact playing in favor of the ANN approach is that predominant amount of the η-deviations is in the case of the 

ANN approach higher than −2 % and at the same time lower than 2 %. Either way, it could be said that neither 

the ANN approach nor the tricubic polynomial shows inappropriately large values of η-deviation or values of μ 

and σ, and therefore both can find its place as a solution of the studied curve fitting issue.   

 

Figure 4 Distribution of the relative percentage error 

6. CONCLUSION 

In the frame of the submitted research, hot deformation activation energy was considered to be strain, strain 

rate and temperature dependent variable. Two entirely different mathematical approaches have been then 

introduced to cope with the corresponding approximation and prediction tasks. First of all, a regression analysis 

of the well-known Garofalo’s relationship has been applied to gain the experimental activation energy values 

from a hot-compression flow stress dataset. Subsequently, the extracted experimental values of the activation 

energy have been described via a multivariate (specifically trivariate) polynomial relationship and an artificial 

neural network approach. With respect to the polynomial expression, a 3rd order (which resulted in a tricubic 

polynomial) has been found to be the best one. A multi-layer feed-forward architecture under 2 hidden layers 

with 8 neurons, which were activated via a hyperbolic tangent sigmoid function, has been then selected as a 

best option in the case of the neural network methodology. Both applied approaches proved a good fit with the 

experimental dataset – although the neural network one has showed a slightly higher performance. Either way, 

both approaches have also provided a good prediction capability, and both can be considered for the practical 

utilization.       
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