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Abstract 

Objective of this work is to model the thermal expansion coefficients of selected steel grade and compare 

results with those measured by TMA method. Coefficient of thermal expansion is described as a function of 

steel composition (C, Mn, P, S, Si, Cr, Ni, Mo) and temperature.Experimental values are described and 

compared with model. Correlation analysis of these data sets is done. Presented model is based on using 

artificial neural network and represents a preliminary test of method capability to be used for such problems 

class – for predicting of thermophysical properties depending on composition and temperatre. 
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1. INTRODUCTION 

The introduction should provide a clear statement of the study, the relevant literature on the study subject and 

the proposed approach or solution. 

Using of methods based on artificial neural network (ANN) in material engineering became a promising way 

for predicting a wide variety of steel properties [1-4]. ANN also are capable of helping with design of new 

material of desired properties [5]. Thermophysical properties depending on material and its composition, 

temperature or even previous forging operations and heat treatment are not easy to obtain from commonly 

available literature [6-8]. One of those properties could be coefficient of thermal expansion (CTE) which is 

important in predicting of thermal stresses during manufacturing of goods or use of them. 

Thermal expansion of material results in thermal stresses in material which can lead to yielding or cracking if 

the stresses are sufficiently high. In some applications (gas /steam turbines, parts of car engines, etc.) it is 

crucial to minimize thermal stresses by selecting material with low or similar CTE in mutually interacting 

components. There is a strong correlation between chemical composition, temperature and values of CTE so 

the relationship between them needs to be studied [9].  

Neural network has the advantage of being fast, flexible efficient and accurate tool to predict and model highly 

nonlinear multidimensional relationships. Due to the flexible modeling and learning capabilities of ANN, it is 

possible to solve complex problems without any mathematical relationships between inputs and outputs. This 

method also reduces the need for experimenal work and time-consuming regression analyses. 

2. ARTIFICIAL NEURAL NETWORK MODEL 

An ANN has non-linear basic processing units called neurons. The neuron model and architecture of a neural 

network describe how a network transforms its inputs into outputs. The neural network architecture consists of 

multiple layers of neurons which have a summing up junction and a transfer function. A single neuron 

(Figure 1) transmits an input p through the connection that multiplies its strength by the weight w to form a 

product wp. A bias b is then applied – it is much like a weight with a constant value of 1 but can be omitted. 
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The transfer function then produces the neuron output Y using the product wp and bias. There are various 

transfer functions, most commonly used are sigmoid and linear. The central idea of an ANN is to adjust weights 

and biases, or the network itself adjusts these parameters to achieve accurate results – desired output values. 

 
Figure 1 Simple neuron 

The most commonly used neural network architecture for predictive type of tasks is given in Figure 2. 

 
Figure 2 Multiple layer perceptron architecture 

It consists of one input layer, one output layer, and one hidden layer. The added hidden layer contains 

intermediary parameters that are automatically generated by the model; the hidden layer is necessary in case 

of complex non-linear relationships between the inputs p and the output Y. One or multiple neurons connect 

the input to the hidden layer. Similarly, one or multiple neurons connect the hidden layer and the output layer. 

1.1. Methodology 

The chemical compositions of the materials used in modelling are summarized in Table 1. Grades 1 -9 are 

described in [8], 10 – 11 in [9]. Those and temperature (from 10 K to solidus temperatures) represent inputs 

to the model. The output of the model is a value of CTE. 
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Table 1 Steel grades used for model  

Grade Element C Mn P S Si Cr Ni Mo 

1 wt.% 0.150 2.000 0.200 0.150 1.000 18.000 9.000 0.600 

2 wt.% 0.080 2.000 0.040 0.030 1.000 19.000 9.250 0.000 

3 wt.% 0.030 2.000 0.045 0.030 1.000 17.000 12.000 2.500 

4 wt.% 0.080 2.000 0.045 0.030 1.000 17.000 12.000 2.500 

5 wt.% 0.080 2.000 0.045 0.030 1.000 19.000 13.000 3.500 

6 wt.% 0.080 2.000 0.045 0.030 1.000 18.000 10.500 0.000 

7 wt.% 0.080 2.000 0.045 0.030 1.000 18.000 11.000 0.000 

8 wt.% 0.150 1.000 0.040 0.030 1.000 12.500 0.000 0.000 

9 wt.% 0.120 1.000 0.040 0.030 1.000 17.000 0.000 0.000 

10 wt.% 0.077 0.635 0.021 0.008 0.201 0.049 0.027 0.003 

11 wt.% 0.162 0.707 0.012 0.007 0.191 0.046 0.0260 0.005 

12 wt.% 0.150 1.11 0.030 0.020 0.500 6.63 3.170 0.410 

Min wt.% 0.030 0.635 0.012 0.007 0.191 0.046 0.000 0.000 

Max wt.% 0.162 2.000 0.200 0.150 1.000 19.000 13.000 3.500 

Mean wt.% 0.099 1.577 0.053 0.037 0.854 14.145 6.982 0.828 

The MATLAB Neural Network Toolbox is used for the optimization of the ANN architecture. To avoid over-

fitting inputs and targets are subdivided into three subsets – training (70 %), validation (15 %) and testing  

(15 %) subset randomly. Over-fitting leads to an inability of the network to provide accurate predictions for new 

sets of inputs, so over-fitted model can only accurate correlate the given inputs. 

Training subset (only) is used to develop the model. The validation subset is used to limit over-fitting – 

preventing the model from memorizing only a given data set and inability to model a new data set with unknown 

values of targets. The test subset is used for checking the generalization capacity of the network – the ability 

to provide an accurate prediction of unknown CTE for a new composition of steel and temperature. 

1.2. Results 

Several ANN were build; the best 

five architectures were stored. 

Correlation between outputs and 

targets for them are depicted in 

Figure 3. The neural network 

consisted of multilayer perceptron 

(MLP) with nine input neuron (8 for 

composition, 1 for temperature), 

eight hidden neurons in the hidden 

layer and one output neuron with 

tanh activation function between 

inputs and hidden layer and 

identity transformation function 

before output neuron was used. 

Previously not used steel grade 

(12 from Table 1) was used for 
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Figure 3 Performance of the best five ANN architectures 
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testing of generalization capability. Comparison with measurement on TMA (Figure 4) device shows good 

accordance of results. 

 

Figure 4 Results comparison 

Figure 4 also shows comparison of measured values of CTE and computed by routine proposed by author 

[10] which is based on relation between CTE nad temperature dependant change of volume computed by 

software Thermo-Calc. Correlation between values predicted by MLP 9-8-1 network model and those 

measured is shown in Figure 5 with high coefficent of determination R2=0.96. Mean deviation between 

predicted and measured values is under 2 % with maximum of 8 % both sides especially at room temperature 

or near austenite decomposition start and end temperatures. 

 

Figure 4 Correlation between model and real data for steel grade 12 
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3. CONCLUSION 

Good accordance of predicted values of CTE with those measured shows ability of artificial neural network to 

model thermophysical properties dependant on composition of steel and temperature. Of course there is still 

need to find optimal architecture of network with aim to get even higher value of the coefficient of determination 

which is certainly possible as cited references proof.  

One of the way is widening the data for building such network especially collection data for more steel grades 

with better distribution of alloying content. Also consistent data set by means of method of CTE measurement 

would help because differences between values from different methods are not negligible. Future work should 

focus on creating a comprehensive collection of thermophysical properties for tens or even hundreds steel, 

cast iron or iron alloys in general to develop highly reliable tool to predict properties values of new alloy grades 

developed by material engineers. 
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