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Abstract 

Due to the constant growth of the copper industry, the increase in production costs and complexity in the 

composition of the feed of the production processes that make up the industry, the analysis of alternatives that 

improve efficiency by studying the dynamics of the processes represents a significant cost reduction. Then, 

the generation of analytical models that represent the dynamic behaviour of production processes has the 

potential to contribute to generating a better understanding of the operating parameters that have a greater 

impact on the response (s), in addition to identifying operating restrictions and optimal levels of operation. The 

present work developed a digital model of the SAG milling process by generating multiple regression and 

quadratic regression models. The relationships between 22 operational variables with production in tons per 

hour were sampled, and after analysing the impact of the independent variables on the response, water 

feeding, sump level, percentage of solids in feeding, pebbles and hardness were maintained for fit the 

analytical models. The multiple linear regression model presents a good fit to the operational data (85.4%), 

however, the inclusion of the interactions and the quadratic effects of the variables increases the coefficient of 

determination (93.2%). 
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1. INTRODUCTION 

There is constant growth in the copper industry and production has been increasing in recent years [1], 

increasing from 20 million tons in 2017 to 21 (rounded) in 2018, while a more recent report generated by the 

International Copper Study Group [2] indicates that since 1900, the production of copper minerals worldwide 

has grown an average of 3.2% per year, reaching 20.6 million tons in 2018, with an increase in the production 

of concentrates of 31.5% and solvent-electrodeposition extraction in 19.5% [3]. Chile is the main producer of 

copper worldwide with a 29% participation and with 23% of the reserves of this commodity [4]. Within the 

national territory there are 3,817 copper mineral deposits [5], where their exploitation represents 91.1 % of the 

composition of exports by the mining market in 2019 [4]. 

Copper oxides that are processed by hydrometallurgy are increasingly scarce in Chile (Copper oxides will 

decrease from 30.8% in 2015 to 12% in 2027), while copper sulphides is more abundant [6]. On fact, 39.2% 

of fine copper production occurs through the hydrometallurgical processes, while the majority of production 

(60.8%) is by flotation processes. A report by Chilean Copper Commission, COCHILCO (by its acronym in 

Spanish) [6] proposes a constant increase in the production of copper concentrates in Chile, where it‘s 

indicated that from 2014 to 2026 it will almost double, being 88% of the national mining production, which 
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means an increase from 3.9 to 5.4 million tons of concentrate. However, flotation processes generate large 

environmental liabilities, such as tailings dams [1]. It is estimated that, in the country, for each ton of Cu 

obtained by flotation processes, 151 tons of tailings are generated [6]. Currently, there are 92 mining 

operations defined as mining environmental liabilities, a decrease of these deposits year-to-year is expected 

[7]. 

On the planet most of the copper minerals correspond to sulphides and a minor part to oxides [8]. The mining 

industry has traditionally operated in two ways, pyrometallurgy if it is sulphided minerals, composed by the 

flotation, smelting and electro-refining processes. While in the hydrometallurgical processes, it has worked 

mainly with oxidized minerals, composed by the leaching, solvent extraction and electro-extraction processes 

[9]. Both working mechanisms have proven to be profitable in industry, however pyrometallurgy has the main 

disadvantage of making SO2 emissions into the atmosphere, generating serious environmental problems [10]. 

As part of the sulphide mineral processing, the comminution process is a key stage, since it is where most of 

the energy invested for process the mineral is concentrated [11]. Then, the SAG milling process consists of 

reducing the size of the particles through the use of large rotating equipment or cylindrical mills, where water 

is added to the mineralized material in sufficient quantities to form a milky fluid, and the reagents necessary 

for carry out downstream processes. 

Considering the above, the analysis of alternatives that improve the efficiency of production processes involves 

significant reduction in costs, considering the difficult situation facing the industry, where contractions are 

occurring worldwide as a result of the contingency [12]. Operational planning that considers the leaching of 

both oxidized and sulphide (secondary) minerals could improve efficiency in the use of resources, decreasing 

the average production costs and increase the productivity. 

2. MATERIALS AND METHODS 

Regression analyzes are part of statistics that investigate the relationship between two or more variables 

related in a non-deterministic way [13]. Simple linear regression analyzes relate a single independent variable 

to a response variable, while multiple linear regression analyzes allow the generation of a linear model in which 

the value of the dependent variable or response (Y) is determined from a set of independent variables called 

regressors (X1,X2,X3...). Then, multiple linear regression models are an extension of simple linear regression 

and multiple non-linear regression models incorporate the interaction and curvature of independent variables. 

Multiple regression models can be used to predict the value of the dependent variable, to evaluate the influence 

that predictors have on it (the latter must be analyzed with caution in order not to misinterpret cause-effect) or 

to optimize the response bounded to the sampling domain [15–17]. 

Multiple regression models can be expressed as presented in equation (1). 

Y = (β
0
+ ∑ β

i
Xi

n
i=1 + ∑ ∑ β

ij
XiXj

n
j=1

n
i=1 ) +ei     (1) 

where: 

β
0
 - ordinate at the origin 

Y - dependent variable 

X - independent variables 

ei - residual or error, the difference between the observed value and estimated by the model 

The database used in this research comes from a plant that processes copper sulphide minerals, collected 

with hourly frequency. The period March-August 2019 was sampled, and 23 variables were measured, 

including the response studied (production in tons per hour, TpH). 
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3. DEVELOPMENT OF ANALYTICAL MODELS 

The use of mathematical models as 

instruments for evaluating alternatives 

and modelling of complex processes is 

becoming increasingly important in the 

field of engineering, with an 

increasingly relevant role as an aid in 

decision-making in the management of 

mineral processing. A total of 23 

operational variables and parameters 

were sampled, those that include the 

speed and pressure of the mill, power, 

water feeding, soluble copper grade, 

carbonate grade, percentage of solids 

in the feed, mineral hardness, sump 

level, granulometry, pebbles, liner age, 

among others process parameters 

such as critical noise or control 

variables of the feeders. Then, filtering 

variables and/or parameters that don’t 

have a direct relationship with the 

response, the sample size is deficient or tends to remain constant, the principal explanatory variables chosen 

for mathematical modelling are shown in Figure 1 (water in feeding, sump level, hardness, solids in feeding 

and pebbles), while the distributions of these explanatory variables is presented in Figure 2. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 1 Distributions of the operational variables water feeding (a), sump level (b), mineral hardness in the 

feeding (c), solid percentage in feeding (d) and pebbles in TpH (e) 

Figure 1 Correlation plot of the operational variables of the SAG 

milling process 
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The correlation plot shown in Figure 1 indicate a high linear correlation between water feeding and the 

response (Production in TpH), while that don’t exist a linear correlation between the hardness and solids in 

feeding variables with production. The distribution of explanatory variables (see Figure 2) indicates that water 

feed to SAG mill has a normal distribution with a mean of 1351 m3/h approximately, sump level has a negative 

skew distribution with a mean of 89 m3/h, hardness has a positive skew distribution with a mean of 35, solids 

percentage in feeding has a negative skew distribution with a mean of 72% and finally, pebbles has a positive 

skew distribution with a mean of 409 TpH. 

After the analysis of correlations shown in Figure 1, multiple regression models and quadratic regression 

models are generated. Then, the fitting of multiple regression model to represent the dynamics of the SAG 

milling process presents good indicators of goodness of fit. The model presents a good fit (R2 = 85.4%) and 

all the variables considered are significant (p <0.05, see Table 1) under the set of sampled values, while the 

F statistic is 2.429×106. 

Table 1 Results of the multiple linear regression model 

 Factor coefficient t p-value 

Intercept -1.12E+04 -2790.923 0.000 

Water in feeding 2.3977 4124.138 0.000 

Sump level 0.2694 19.334 0.000 

Hardness 3.0049 74.947 0.000 

Solids in feeding 156.4508 3177.553 0.000 

Pebbles 0.0593 86.812 0.000 

In addition to the adjustment of the multiple linear regression model presented in Table 1, a quadratic 

regression model is developed, incorporating the effects of interaction and curvature of the variables 

considered in the model presented in Table 2. The quadratic model indicates that the interactions water in 

feeding with sump level and solid in feeding are significant, in addition to the interaction solids in feeding with 

pebbles, contribute to explain the response variable. On the other hand, the curvature of the variables water 

and solids in feeding also contribute to explain the response. The quadratic model presents a better fit than 

the model linear (R2 = 93.2%) and the statistic p-value (<0.05, see Table 2), both of each of the parameters 

that make up the model, and the aggregate model, validates it. The F statistic is 5.745×106. 

Table 2 Results of the adjustment of the quadratic regression model 

 Factor coefficient t p-value 

Intercept 21790 605.781 0.000 

Water in feeding -4.5608 -426.139 0.000 

Sump level -0.1481 -3.512 0.000 

Hardness 1.3239 51.931 0.000 

Solids in feeding -639.2631 -693.913 0.000 

Pebbles -0.4342 -44.098 0.000 

Water in feeding × Sump level 0.0001 4.349 0.000 

Water in feeding × Solids in feeding 0.103 800.718 0.000 

Solids in feeding × Pebble 0.006 43.724 0.000 

Water in feeding2 -0.0001 -113.391 0.000 

Solids in feeding2 4.632 759.521 0.000 



May 20th - 22nd 2020, Brno, Czech Republic, EU 

 

 

Finally, the response surface designs for the quadratic model based on the independent variables indicate that 

production increases at high levels of solids and water in feeding (see Figure 3.a), at high feed of pebbles in 

TpH (see Figure 3.b), and low sump levels (see Figure 3.b). 

 

(a) 

 

(b) 

Figure 2 Response surface plots for production versus water and solids in feeding (a), and sump and 

pebbles level in TpH (b) 

4. CONCLUSIONS 

The mineral deposits are usually heterogeneous, which forces the production phase to evolve over time. In 

this research, the modelling of the dynamics of the SAG grinding system was considered, for which the impact 

of 22 operating variables on production in tons per hour was evaluated. The correlation between the variables 

was studied, filtering the variables that have a greater impact on the response, which are pressure, mill speed, 

percentage of solids in the feed, mineral hardness, and sump level. Multiple linear regression model and a 

quadratic model were generated, which represented significant adjustments to the sampled domain, with R2 

values of 85.4% and 93.2%, respectively. Multiple regression models prove to be a powerful tool in modelling 

the studied system, in addition to presenting the potential of using optimization algorithms to calculate the 

values that maximize the response. 

Finally, the dynamics of the SAG milling process could be modelled, simulated, and optimized using 

conventional statistical models [18], machine learning techniques [19], Bayesian networks [20] or discrete 

event simulation framework [21]. 
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