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Abstract 

The problem of selecting a material with an extreme value of its performance using its anisotropy is considered. 

It is important for specialists of metallurgical profile to be able not only to select the material for realization of 

the set engineering task, but also to use its anisotropy, and to be able to determine the orientation of the 

material with the extreme value of its performance. Mathematical modeling and computer analysis of 

anisotropy of tensor coefficients using the example of thermal expansion coefficient have been performed. 

Since thermal expansion, like any tensor physical property of crystals, is a continuous function of direction, 

then in order to determine the directions with a zero value of thermal expansion, the following ratio must be 

satisfied: αn = 0. This can only happen if the main components of the thermal expansion tensor have different 

symbols. The Mathcad Prime 6 software complex has defined a function that performs the calculation of the 

value of thermal expansion coefficients in crystals in any direction, calculated the value and position of 

extremums of thermal expansion coefficients, and constructed an index surface, a stereographic projection of 

the index surface and the cross section of the index surface of thermal expansion coefficients X1X3. The lowest 

and highest values of the thermal expansion coefficient of the crystal have been found. 
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1. INTRODUCTION 

In the study of the theory of plastic flow of solids, one of the main goals is to master ability to perform 

mathematical modeling and computer analysis of anisotropy of tensor coefficients [1-3], which define the work 

of mono- and polycrystalline materials in different conditions and modes; and to determine the choice of 

materials with optimal characteristics for specific scientific and engineering solutions. For specialists of 

metallurgical profile it is important to be able not only to select the material for the realization of the set 

engineering task, but also to use the anisotropy to determine the orientation of the material with the extreme 

value of its performance. 

In this regard, the solution of extreme problems, implemented both analytically and numerically by using 

modern computer programs, the Mathcad Prime 6 software package in particular, appears to be an urgent 

task. This allows to comprehensively study the behavior of the material in the process of its development and 

processing; analyze the geometry; perform engineering calculations; obtain photorealistic images; check 

models without testing experimental samples and save the researcher's time [2]. 

If the properties of sample cut from a material do not depend on its orientation, the material is called isotropic. 

Otherwise, the material is called anisotropic. Depending on what criterion is taken when identifying the 

properties of the specimens, it could mean mechanical, optical, thermal and other types of anisotropy. Crystals, 

for example, are always anisotropic, which is determined by their internal structure, since the atoms in the 

crystal cell are arranged in a very specific way. Knowing the structure of the crystal cell, we can draw some 
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conclusions about the nature of the anisotropy, for example, indicate symmetry planes. Samples cut from the 

crystal symmetrically with respect to such a plane will reveal identical properties. Technical alloys consist of 

crystalline grains, the orientation of which is random and arbitrary. Therefore, in a body consisting of a large 

number of such grains, it is impossible to indicate any preferred direction that differs from others. Polycrystalline 

metal behaves, on average, as an isotropic body. In this case, it is assumed that the sample sizes are large 

enough and it contains quite a few crystalline grains. Small samples consisting of a small number of grains will 

exhibit different properties, but this difference is completely random, as it depends not on the orientation of 

sample, but on the random orientations of its constituent grains [4]. 

In rolled metal, the grains are deformed in the direction of rolling, and so-called texture is formed. Therefore, 

the properties of the samples cut in the rolling direction and in the transverse direction will be different. The 

same anisotropy occurs in virtually all types of metal processing by pressure. However, the anisotropy of the 

elastic properties associated with the presence of texture is small; the difference in the modulus of elasticity of 

the rods, the axes which are oriented in the rolling direction and in the transverse direction, may be neglected. 

However, the plastic properties for these directions, the elastic limit or the yield stress are already noticeably 

different. Proper thermal treatment of the deformed metal removes the anisotropy or at least reduces it [5,6]. 

The anisotropy coefficient KL is taken into account if the first main stress in bending or stretching - the 

compression is directed perpendicularly to the rolling direction of the metal (Table 1). Anisotropy is not taken 

into account during torsion (KL = 1). 

Table 1 Anisotropy coefficient values [7] 

Breaking point σВ, MPa КL 

Until 600 0.90 

From 600 to 900 0.86 

From 900 to 1200 0.83 

Above 1200 0.80 

The anisotropy coefficient is taken into account when calculating the material endurance limit [5]. 

During the process of cold plastic deformation, mechanical energy is converted into thermal energy. It is noted 

that the steel strip in the center of deformation during rolling cannot be regarded as an isotropic material: the 

breaking point and mechanical properties of the metal along the length of the arc of contact vary [7]. 

The aim of this work is the development of an algorithm and program for calculating the tensor physical 

properties of a material, particularly the coefficient of thermal expansion in the Mathcad Prime 6 software 

complex; optimization of materials through understanding of the dependence of properties on the structure 

2. RESEARCH METHODOLOGY 

As an example, let us consider the problem of determining the thermal stability of a class 2 crystal under 

thermal expansion conditions [6]. 

Since the thermal expansion, like any tensor physical property of crystals, is a continuous directional function, 

then to determine the required directions with zero thermal expansion, the following relation must be satisfied 

0=n . This can only happen if the main components of the thermal expansion tensor have different signs. 

The thermal expansion of crystals is described by a symmetric second-rank tensor  ij . The magnitude of 

thermal expansion in an arbitrary direction n (n1, n2, n3) in the crystal is defined as ( ) jiij nnn  = , or in matrix 

form (eqn 1):  
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The value ( )n  reaches the extreme values in the directions of the eigenvectors of the tensor  ij , and these 

extreme values are equal to the corresponding eigenvalues of the tensor  ij . If all eigenvalues of the tensor 

 ij  are positive (negative), then all ( )n  are positive (negative). If there are both positive and negative values 

among the eigenvalues of the tensor  ij , then ( )n  takes both positive and negative values; at the same 

time on some cone of directions ( ) 0=n . 

For class 2 crystals in the crystal-physical coordinate system in the standard setting (X2║2), the tensor  ij  

has the following form (eqn. 2): 
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where   )(1012 16
11

−−= K  

)(108.44 16
22

−−= K  

)(1032 16
33

−−= K . 

We solve the problem in the Mathcad Prime 6 software complex [8]. We introduce the tensor of coefficients of 

thermal expansion of crystals – input of coefficients of thermal expansion of crystals (eqn. 3). 

                                                                           (3) 

To calculate the eigenvalues and eigenvectors of the tensor  ij , we use the built-in eigenvalues and 

eigenvector functions - calculation of value and position of coefficient extrema of thermal expansion of crystals 

(eqn. 4). 

                                                                                    (4) 
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To visualize the anisotropy of the coefficient of thermal expansion of crystals, we construct a function that, 

according to expression (1), conducts the calculation of the value of the coefficient of thermal expansion of 

crystals (in 10-6 K–1) in an arbitrary direction n (eqn. 5). 

                                                                                                         (5) 

3. RESULTS OF THE STUDY 

In eqn. 6 the program for calculating the coefficient of thermal expansion in the software complex Mathcad 

Prime 6 is presented. The construction of the index surface of the coefficient of thermal expansion of crystals, 

its stereographic projection, as well as the cross section of the index surface with the plane X1X3 are presented 

respectively in Figures 1-3.  

 

Figure 1 Index surface of coefficients of thermal expansion of crystals 

 

Figure 2 Stereographic projection of the index surface of the coefficients of thermal expansion of crystals (in 

10-6 K-1) 
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Figure 3 Cross section of the index surface of the coefficients of thermal expansion of crystals by the plane 

X1X3 

Points X1 and X2 in Figure 1 are the outputs of the corresponding crystal-physical axes; the crystal-physical 

X3 axis is directed upwards from the centre of the stereographic projection (see eqn. 6). 

                                  (6) 

Thus, based on the calculation results, it follows: 

a) the smallest value of the coefficient of thermal expansion, equal to 6.4·10-6 K-1, is observed in the 

direction lying at the plane X1X3 and making an angle of 25.1° with the X2 axis; 

b) the highest value of the coefficient of thermal expansion, equal to 44.8·10-6 K-1, corresponds to the 

direction of the axis X2 (Y  - section); 

c) as it may be seen from the obtained values of the main coefficients of thermal expansion of the crystals, 

all of them are positive; therefore, there are no directions with zero value of thermal expansion coefficient 

in these crystals. 
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As from eqn 4 follows, tensor  ij  in the system of its main axes 321 XXX  has three different eigenvalues; 

the symmetry of the index surface of the coefficient of thermal expansion of the crystal - mmm, which is 

consistent with the Neumann principle [1]. 

4. CONCLUSION 

An algorithm and a program for calculating the tensor physical properties of the material, particularly the 

coefficient of thermal expansion in the software complex Mathcad Prime 6, have been developed. The 

construction of the index surface of the coefficient of thermal expansion of crystals, its stereographic projection, 

as well as the cross section of the index surface by the plane X1X3 have been conducted. The smallest value 

of the coefficient of thermal expansion equal to 6.4·10-6 K-1 has been found, which is observed in the direction 

lying in the plane X1X3 and constituting an angle of 25.1o with the X2 axis; and the highest value of the coefficient 

of thermal expansion, equal to 44.8·10-6 K-1, corresponding to the direction of the axis X2 (Y - section). 
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