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Abstract

Biology-inspired algorithms represent a set of various techniques which can be used e.g. in the case of high-
nonlinear approximation tasks. In the presented research, this kind of algorithms was utilized to approximate
the experimental flow curve dataset of the micro-alloyed manganese-vanadium steel. Two methodically
different representatives, namely a genetic algorithm optimization and an artificial neural network approach,
were applied for this purpose. In the first case, a genetic-algorithm-optimization technique was used to
calculate the material constants of two flow stress models. These models were then applied to describe the
flow curves of the examined steel. In the second case, an artificial neural network was assembled, adapted
and used to deal with the flow curve approximation issue. Graphical results have showed a high accuracy with
respect to both approximation methods. Nevertheless, the following statistical evaluation has revealed a much
higher fit in the case of the proposed neural network approach.
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1. INTRODUCTION

Since the end of the last century, biology-

inspired algorithms have been being extensively . ——"
used to enhance the solution of complex
scientific and engineering issues, for instance
highly nonlinear approximation tasks [1]. In the
field of material forming, so-called hot flow
curves are a typical representative of this kind of
approximation problem. In the case of formed
(e.g. rolled or forged) material, these curves
illustrate a flow stress development under
different  thermomechanical circumstances
(such as strain, strain rate and deformation
temperature) - see Figure 1 for illustration [2].
These dependencies are compiled on the basis
of experimentally acquired datasets (typically
originating from torsion or uniaxial compression tests), and an approximation process then allows the flow
stress prediction under non-experimental conditions.
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Figure 1 Schematic illustration of hot flow curve types

This approximation is usually performed by means of previously derived flow stress models [2, 3]. However,
an accuracy of these models is highly dependent on the calculation of material constants. Of course, these
constants are often calculated through the numerical techniques (such as gradient algorithms [4]) because of
the nonlinearity of the flow stress models. Moreover, searching for optimal values of material constants can be
also alternatively realized by means of so-called genetic-algorithm (GA) optimization [5, 6]. This heuristic
evolutionary algorithm is inspired by the genetic principles and natural selection theory which were formulated
by Ch. Darwin (1859) [7]. Nevertheless, there is also a biology-inspired approach which allows exclusion of
the flow stress models from the approximation procedure, so they do not have to be used at all. So-called
artificial neural network (ANN) approach [8, 9] can be used to deal with theoretically every approximation issue.
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It is inspired by the Spencer's description of information processing in the brain neural network (1872) [10]. In
the submitted manuscript, the Cingara & McQueen's flow stress model and its modification are used to
approximate an experimental hot flow curve dataset of the manganese-vanadium steel. The GA optimization
is utilized to find proper material constants. In addition, the examined dataset was also approximated via the
ANN approach. The experimental conditions were as follows: deformation temperatures (1123 K, 1273 K,
1373 K, 1473 K and 1553 K), strain rates (0.1 s™', 1 s71, 10 s™" and 100 s') and the true strain up to 1.0. The
whole experimental procedure was described previously in [11]. The aim of this research is to compare the
accuracy of both proposed methods and their prediction capability beyond the experimental conditions.

2, FLOW CURVE APPROXIMATION VIA FLOW STRESS MODELS WITH GA OPTIMIZATION

The well-known Cingara and McQueen's model [12] is designed to approximate the flow curves in the strain
range of 0 < € < ¢, i.e. up to the peak point (Figure 1) - see equation (1). The modification of this model [11]
is then intended to cover the strain range of ¢, < ¢, i.e. beyond the peak point - see equation (2):

azap-[i-exp(l—aiﬂc (1)

p

0 =04 + (ap — O’SS) . [i - exp (1 — i)]s (2)

&p

In equations (1) and (2), o (MPa) is the flow stress level (dependent variable) and ¢ (-) is the true strain
(independent variable). The presented models contain auxiliary variables (parameters), namely the peak
strain, & (-), peak stress, o, (MPa), steady-state stress, oss (MPa), hardening exponent, ¢ (-), and softening
exponent, s(-). These parameters are dependent upon strain rate and deformation temperature. The
experimental values of &, 0, and 0ss are deducted from the experimental o - € curves (clearly marked in
Figure 1). The experimental values of ¢ and s are then achieved by means of regression analysis of the
logarithmic expressions of equations (1) and (2) [11,12]. It is quite obvious that an accurate approximation of
these parameters plays a key role in the case of performance of models (1) and (2). Different equations have
been proposed to individually approximate each mentioned parameter. Nevertheless, the following equation
(3) represents the relationship which has a capability to universally describe each above mentioned parameter
[11]:

1
. PPy
V&, T,p) =p,-&  "-exp(—py-Tp) 3)

The dependent variable yi(¢, T, p) is always one of the described parameters. The independent variables
& (s™) and T; (K) represent the strain rate and deformation temperature, respectively. Note, the i =[1, n] € N
is the i-th é-T combination (n = 20). Equation (3) also contains four material constants - p1 (various), p2 (-),
p3 (K) and p4 (K™') - which have to be calculated [11]. In this research, optimal values of these constants were
found on the basis of minimization of MSE (Mean Squared Error [13]) performance function:
L 2

minMSE = - Sl [py & - exp(py - T) 4)
In equation (4), y; represents i-th experimental value of given parameter. The minimization process was
performed via GA optimization as is illustrated in Figure 2. The genes represent the values of the material
constants, i.e. p1, p2, ps and ps. A specific set of these constants (genes) is labeled as an individual. The
population is then the set of various individuals. Itis clear, each individual in the population represent a possible
solution of the minimization issue. The genetic algorithm is an iterative heuristic process which is based on the
generation of high amount of different individuals. Each iteration step creates a new population, and each
individual of the newly created population is evaluated with respect to equation (4). The algorithm runs ad
infinitum until the predefined termination settings are reached - e.g. the value of MSE is smaller or equal to
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that required, or a maximum of iterations was achieved. New populations are created on the basis of three
operators (selection, crossover and mutation) - in detail described in [6]. Resulting values of examined material
constants are listed in Table 1.

Generating the initial population

Generating the
new population

Evaluation of performance

: i  function for each NG

‘e -
1.9 :

;8 t el algorithm-terminating — Individual with the

: g - T hed2, o best gene

Figure 2 Schematic illustration of the genetic algorithm optimization

Table 1 The values of the material constants of equation (3) after the genetic algorithm optimization

Constant / Parameter &p Op Oss c s
p1__ (various) 2.73:-10" 1.22:10* 1.92:10* 3.25-1072 2.03-10""
p2_ () 4.36-10"" 4.74-10™" 5.66-10"" 1.01-10™" 3.51-10™"
p3_ (K) 3.50:10%2 4.22-10*2 5.17:10%2 3.06:10%2 2.55-10*2
ps (K1) 3.33:10°° 3.64:10°° 4.06-1073 -1.78:10°3 1.11-10°3

3. FLOW CURVE APPROXIMATION VIA ANN APPROACH

In comparison to the above introduced flow stress models, an artificial neural network approach offers a
universal approximation solution. The flow stress models are limited by their fixed mathematical structure,
while an ANN architecture is built as a network of variable number of neurons (computational units) [14]. The
experimental hot flow curve dataset of the investigated steel has been approximated via Multi-Layer Feed-
Forward Atrtificial Neural Network with the Back-Propagation (BP) learning algorithm (Figure 3).

The proposed network connects the independent
variables (i.e. strain, strain rate and deformation
temperature) with the dependent variable (i.e. flow
stress) via four-layer network of artificial neurons.
The neurons of each layer are connected with the
neurons of the neighboring layers by the synaptic
weights, w (-). In addition, the neurons of the hidden
and output layers are associated with the so-called
bias value, b (-). The input layer is intended only for
implementation of independent variables into the Input layer Hidden layers Output layer
network - no calculations run inside the input Fesd-Forward of unictional signal >
neurons. In the contrary, neurons of the hidden and

output layers represent the main computational units Figure 3 Architecture of the proposed neural
[9] network

Back-Propagation of error signal

The process of the calculation of the output variable (i.e. flow stress) via the proposed type of the neural
network is called as the feed-forward of functional signal - described in [14]. Nevertheless, the proposed
network has to be adapted before its practical use. This process ensures the correct response of the network
(close as possible to the target values). A key role of the adaptation process is represented by a training
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procedure. The aim of the network training is to find a proper set of w-values and b-values in order to minimize
the performance function - mean squared error (MSE [13]) in the case of this research. It is highly important,
the trained network has to allow the prediction beyond the experimental conditions, i.e. the network must not
be overtrained. The back-propagation of error signal [15] and the Levenberg-Marquardt optimization algorithm
[16,17] in combination with the Bayesian regularization [18,19] were employed to deal with this issue. The
training process should be applied at different network architectures, i.e. under various numbers of hidden
layers and neurons inside them. The proper architecture is, of course, selected on the basis of the smallest
returned MSE-value [20]. In the case of this research, two hidden layers with four neurons in each layer were
found to be appropriate - see Figure 3 for illustration.

4, RESULTS AND DISCUSSION

The color curves in Figure 4 represent the graphical comparison among the experimental (boxes) and two
calculated (lines) datasets. The dashed lines embody the curves which have been calculated on the basis of
above introduced flow stress models with GA optimization, while the full lines symbolize the proposed ANN
approach. In addition, there is another flow curve dataset (gray dashed and full lines) which represent the
prediction beyond the experimental conditions (specifically at the temperature levels of 1173 K, 1223 K, 1323 K
and 1423 K). The aim of this additional dataset is to verify the prediction capability of utilized approximation
methods. The charts in Figure 4 clearly show that the both approaches have a high ability to describe the
experimental data. The ANN description, however, seems to be slightly better (see e.g. 1273 K and 0.1 s7".
The predicted curves (gray lines) also exhibit a high appropriateness in the case of both methods - each
predicted curve seems to be in the presumed temperature level.
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Figure 4 Flow curves of the manganese-vanadium steel: experiment (boxes), calculated by the ANN (full
lines), calculated by the flow stress models with GA optimization (dashed lines)

In order to quantify the description accuracy, the relative percentage error, n (%), has been employed to
compare deviations between the experimental and computed data [20]:
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Ll (5)

The ni (%) is the i-th deviation (where i = [1, n] € N; n is the number of flow curve datapoints). The y; (MPa)
and y(x;) (MPa) correspond to the i-th experimental and calculated flow stress value, respectively. The n-values
distribution is graphically expressed in the form of histograms in Figure 5, where the column heights indicate
the relative frequency of the n-deviation occurrence. It is clear, the n-deviation of the ANN approach is ranging
in the narrower range (practically between - 8 % and 8 %) in comparison to the flow-stress-models/GA
approach (ranging from — 8 % to 16 %). The mean value, y (%), and standard deviation, o (%), were
subsequently introduced to augment the statistical evaluation [20]:

1

p== e (6)

n

o= /% (i — w2 (7)

The p-values and o-values are displayed in Figure 5. In the case of the ANN approach, these values are closer
to zero - this fact thus clearly demonstrates a higher curve fit of this method. The ANN approach is not limited
by a fixed mathematical structure unlike the classic predictive models; so theoretically, the ANNs should be
able to describe any approximation task.
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Figure 5 Distribution of the relative percentage error

5. CONCLUSION

Two different biology-inspired algorithms were utilized to approximate the experimental hot flow curve dataset
of the micro-alloyed manganese-vanadium steel. In the first case, the well-known Cingara & McQueen's model
and its modification were used to describe the examined flow curve dataset. A bio-inspired technique, namely
genetic algorithm optimization was employed to calculate the material constants of these models. In the second
case, the flow curve dataset was approximated via a multi-layer feed-forward artificial neural network with the
back-propagation learning algorithm. The purpose of this research was to compare the proposed
approximation methods in the sense of accuracy of hot flow curve description. Obtained results have indicated
higher approximation accuracy in the case of the assembled artificial neural network. Nevertheless, the
proposed flow stress models with a genetic algorithm optimization also give a good description.
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