SURFACE MORPHOLOGY ANALYSIS OF X39Cr13 STEEL USING FOR BIOMEDICAL APPLICATIONS

1Monika GWOŻDZIK, 2Sławomir KULESZA, 3Mirosław BRAMOWICZ

1Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Institute of Materials Engineering, Częstochowa, Poland, EU, gwozdzik.monika@wip.pcz.pl
2University of Warmia and Mazury in Olsztyn, Faculty of Mathematics and Computer Science, Olsztyn, Poland, EU, slawek.kulesza@matman.uwm.edu.pl
3University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Olsztyn, Poland, EU, miroslaw.bramowicz@uwm.edu.pl

https://doi.org/10.37904/metal.2019.873

Abstract

The presented paper contains the results of research on fractal analysis. The fractal analysis was carried out on X39Cr13 steel subjected to heat, surface and thermo-chemical treatments. The research was carried out according to various variants: hardening + tempering (H/T), hardening + tempering + surface treatment (H/T/N, hardening + tempering + surface treatment + sterilization (H/T/N/S), hardening + tempering + sterilization + corrosion resistance test (H/T/S/C), hardening + tempering + surface treatment + sterilization + corrosion resistance test (H/T/N/S/C). Spatial characteristics of the surface texture of steel samples were derived from SEM images.

Keywords: X39Cr13 steel, fractal analysis, surface topography

1. INTRODUCTION

On the world the strives to improve the properties of materials by applying different types of coatings to materials. More and more research centers conduct research related to the modification of the surface layer of materials [1-16]. This is due to the fact that conventional materials do not always meet specific requirements, for example the effect of combining wear and corrosion resistance, which can significantly accelerate the material degradation process. In paper [1], the authors developed antibacterial coatings based on the S phase. The researchers applied magnetron deposition by co-deposition of austenitic stainless steel with Ag / Cu to form a hard S-phase doped with Ag, Cu or both in monolayer and multilayer structures. The researches have been shown that, it is possible to produce dense Ag and Cu doped S-phase layer with significant anti-bacterial efficacy. In paper [3] the metals were subjected to surface modifications by plasma nitriding or physical vapor deposition to produce diamond-like carbon coating, respectively. On the other hand, in the paper [4], tests were carried out on 316L stainless steel material subjected to plasma nitriding. Authors in the paper [4] stated that the temperature of treatment is the main factor influencing the properties of the layer produced on austenitic steel 316L. The studies related to the application of scanning electron microscopy (SEM) [1,17-27] and atomic force microscopy (AFM) [19,23,28,29] are of great importance especially in material engineering. In this paper was used to extract non-random patterns from data series regardless of their origin: SEM images, and it was interpreted obtained characteristics in a consistent manner.

2. MATERIALS AND EXPERIMENTAL METHODS

Martensitic steel belonging to the group of stainless steel X39Cr13 according to EN 10088-1 [30] was selected for laboratory tests. The tests were carried out on samples with a thickness of 1 mm. The tests were carried out on samples which were subjected to heat treatment consisting in hardening them with a 1050 °C austenitizing temperature. The holding time at this temperature was 20 minutes. After hardening, the steel was
subjected to a two hour temper at 620 °C. Austenitization and tempering were carried out in a vacuum oven with compressed nitrogen cooling. Next, the plasma nitriding process was carried out. The sterilization process and the corrosion resistance tests were carried out for some of the samples. The nitriding was carried out at \(T = 460 \, ^\circ\text{C} \) and pressure \(p = 145 \, \text{Pa} \) during \(t = 20 \, \text{h} \). 25 % \(\text{N}_2 \) + 75 % \(\text{H}_2 \) was used as reactive atmosphere. The sterilization by steam was carried out in an autoclave at \(T = 134 \, ^\circ\text{C} \) and pressure \(p = 0.21 \, \text{MPa} \) during time \(t = 0.5 \, \text{h} \) in for cycles. Corrosion resistance tests were performed in Tyrode’s physiological solution (\(\text{pH} = 6.8 \pm 7.4 \)). Characteristics of multiscale patterns in surface topography of steel samples subjected to thermochemical processing were derived from their SEM images [17,26]. To this end, the numerical routine was carried out that begun with calculations of the 2-dimensional autocorrelation function \(R \):

\[
R_{mn} = \frac{1}{2S_q^2} \sum_{k=1}^{N-n} \sum_{l=1}^{M-m} \left(z(x + m, y + n) \cdot z(x, y) \right)
\]

where:

- \(m, n \) - discrete translation of a duplicated image from the origin
- \(S_q \) - root-mean-square surface roughness
- \(N, M \) - the numbers of scan steps along each side.

Axial differences surface geometry can be expressed using anisotropy ratio \(S_{\text{an}} \), defined as the proportion of two extreme decay lengths of lateral autocorrelation [31]:

\[
S_{\text{an}} = \frac{L_{a1}}{L_{a2}}
\]

where:

- \(L_{a1} \), and \(L_{a2} \) - are the smallest and largest decay lengths, respectively

In the next step, 2-dimensional autocorrelation function was averaged around its origin into 1-dimensional autocorrelation curve \(R(\tau) \), and then processed to obtain the structure function \(S(\tau) \) according to the formula [31]:

\[
S(\tau) = 2S_q^2 \left(1 - R(\tau) \right)
\]

Sayles and coworkers demonstrated that the structure function is governed by specific scaling law [32]:

\[
S(\tau) = K\tau^{2(2-D)}
\]

where:

- \(D \) - is the fractal dimension
- \(K \) - pseudo-topothytes

As a rule, \(D \) and \(K \) correspond to the way, how the relative and absolute height variations remain scale-invariant, respectively. However, the allometric scaling remains valid as long as the scale size does not exceed certain threshold level, referred to as the corner frequency (\(f_{c1}, f_{c2} \) depending on the direction), beyond which the plot turns flat. On the other hand, in case of materials with hierarchical structure of surface patterns, multiple scaling regimes are supposed to occur independent of each other.
3. RESULTS OF EXAMINATION

SEM images shown in Figures 1(a-e) present grayscale surface maps of steel samples taken from rectangular areas 25 by 35 µm in size. The images reveal changes brought about by consecutive processing steps of the thermochemical treatment, that is: hardening and tempering (H/T), nitriding (H/T/N), sterilization (H/T/N/S) and corrosion tests (H/T/S/C and H/T/N/S/C). Example log-log plot of a profile structure function demonstrating this behavior is shown in Figure 1f.

![SEM images of X13Cr39 steel samples at various stages of thermochemical treatment procedure: (a) hardening and tempering, (b) nitriding, (c) sterilization, (d) corrosion test after nitriding followed by sterilization, (e) corrosion test after sterilization. Apart from that, (f) shows example log-log plot of the profile structure function in the direction of fast correlation decay determined from SEM image of the hardened and tempered sample.](image)

Surface of the steel specimen seen in Figure 1(a) is found rough with tiny although very sharp needle-like precipitates that shine bright under electron illumination. Based on their lower work function the precipitates may be linked to M23C6 carbides. Figure 1(b) presents SEM image of the same sample after being nitrided. Unlike hardening, however, the nitriding ends up in a surface texture dominated by regular grains around 1 µm in diameter spread randomly on otherwise flat surface with thin and shallow ridges. Various foreign compounds, mostly Fe3N and CrN, are found to diffuse deep inside the material during nitriding, which leads to formation of the nitride layer. Figure 1(c) shows the surface of previously nitrided sample subjected in the following to sterilization. Similar to the nitrided sample, numerous grains around 1 µm in size can be spotted in the image, however the surface itself no longer exhibits any ridges. Instead, well-separated dimples can be seen. Samples subjected to corrosion tests in Tyrode’s solution shows in Figures 1(d) and Figures 1(e) do not differ significantly in their geometrical appearance regardless of the details of preceding treatments. Both images exhibit the presence of large, regular grains 2-3 µm wide lying on flat surface with no other distinct features. Table 1 presents statistical and angle-dependent characteristics of the surface geometry of investigated samples determined for both directions of spatial decays of horizontal autocorrelation. In general, anisotropy ratio is found to increase steadily after each step of the treatment procedure from fairly low value 0.57 specific of moderately isotropic structures to 0.92 corresponding to highly isotropic surfaces. Apart from that, all samples exhibit monofractal characteristics mostly affected by the presence of spherical grains in SEM images. On one hand, obtained fractal dimensions are found to lie in the narrow range between 1.6 and 1.8 specific of well-developed surfaces, that is surfaces with significant magnitude of height variations at different length scales. On the other hand, however, allometric scaling behavior disappears independent of the line of
observation shortly after the shift in lateral correlation achieves the limit of few hundreds nanometers established by the corner frequency. Here, corner frequency agrees well with the size of spherical grains seen in SEM images, and such a result suggests that geometrical structures stay in close relation to scale-invariant measures. From the above observations the conclusion can be drawn that no aggregation process occurs on the surface of the steel samples subjected to various treatment procedures, which agrees with predominant topographical features seen in SEM images.

Table 1 Axial characteristics of surface texture geometry of steel samples: S_{fr} - anisotropy ratio, D - fractal dimension, τ - corner frequency, a_1 - fast-decay axis, a_2 - slow-decay axis

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{fr}</th>
<th>a_1 axis</th>
<th>a_2 axis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D_1</td>
<td>τ_1</td>
</tr>
<tr>
<td>H/T</td>
<td>0.57</td>
<td>1.71</td>
<td>1320</td>
</tr>
<tr>
<td>H/T/N</td>
<td>0.75</td>
<td>1.71</td>
<td>600</td>
</tr>
<tr>
<td>H/T/N/S</td>
<td>0.91</td>
<td>1.61</td>
<td>560</td>
</tr>
<tr>
<td>H/T/N/S/C</td>
<td>0.92</td>
<td>1.72</td>
<td>1100</td>
</tr>
<tr>
<td>H/T/S/C</td>
<td>0.81</td>
<td>1.81</td>
<td>820</td>
</tr>
</tbody>
</table>

4. CONCLUSION

The fractal analysis was performed on samples of X39Cr13 steel. The obtained results are as follows:

- after the nitriding process on the surface of the tested samples, regular grains with a diameter of about 1 µm were distributed unevenly distributed on a flat surface with thin and shallow ridges. However, after sterilization of nitrided samples, only 1 µm grains were observed without characteristic ridges,
- after corrosion tests no significant changes in the steel tested were observed,
- the ratio of anisotropy in the test samples increases after each processing step from 0.57 (H/T) to 0.92 (H/T/N/S/C).

REFERENCES

