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Abstract

The paper introduces modifications to the classical regression analysis that are deemed necessary when
working with typical data from metallurgy, and foundry industry in particular. It specifically concerns the problem
of multicollinearity, and shows both the practical application of the modified procedures and its consequences.
The usefulness of the alternative procedures was verified for the metallurgical data that reflect existence of
relation between selected mechanical properties of casts and their chemical composition.

1. INTRODUCTION

When modelling technological processes using the regression-based approach, the real-world data - and
specifically those from metallurgical processes, as it turns out rather typically, - give rise to many pitfalls that
may affect significantly the quality of a regression model. The input data in itself can cause problems, if the
corresponding data matrix does not comply with the important prerequisite of having linearly independent
columns (the so-called problem of multicollinearity). One methodology of dealing with this problem, simple at
a glance, is to skip the dependent columns. This, however, is not understandably popular with practicians, as
such a procedure may in the end result in problems with the interpretation of the model. If all the covariates or
factors are to be kept in the model, another possibility is to use the so-called ridge regression. Yet another way
of proceeding is to centralize the data, as described in chapter three, which also mitigates the consequences
of wrong data. Since the ridge regression requires a constant parameter to be selected, in order for the method
to be applied in practice, the paper also describes the technique of doing so, and relates the selection of the
constant to the overall quality of the regression estimator. The ridge estimator reduces potentially the
imprecision of the regression estimates by lowering their variance, but also introduces a bias to the estimates.
Both these statistical properties combined define the quality of the estimator in the form of the mean squared
error.

2, THE PROBLEM OF MULTICOLLINEARITY

Let us have the following problem [1]. A chemical composition of casts is controlled. If it is found out that the
composition is inappropriate, the cast is isolated, and the outcome of mechanical tests is awaited. The
mechanical tests control firmness characteristics, such as y1 = yield strength (Re), y2 = failure strength (Rm),
ys = yield point (A). The tests are applied to scratch patterns, in line with the norm EN DIN 1563. The elements
of the chemical composition observed are variables x1 - xo. Table 1 shows some of the measurements that
were taken in this respect. The entire data matrix contained thirty measurements.

The measurement results were used in the regression analysis when searching for a model that would describe
dependencies of the y’s characteristics on the elements x;. In problems of this kind, a high-degree linear
dependence among the x/s in the data matrix frequently occurred, i.e. a multicollinearity turned up. Such
dependency affects considerably the quality of the regression model found. To be more exact, the order of
magnitude of the variance of the estimated regression coefficients increases quite a bit (even a hundred times).
It is therefore convenient to check whether the input data matrix, containing the values of the xi’s, is burdened
with a linear dependence, and if so, then try to solve this problem. We shall show two ways of reducing the
problem of multicollinearity and the consequences of not doing so.
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Table 1 Selected measurements as a result of the control of casts [1]

x1-C x2 - Cr x3-Cu X4 - Mg X5 - Mn X6 - P
3.62 0.019 0.021 0.056 0.23 0.025
3.65 0.051 0.030 0.035 0.218 0.022
3.65 0.017 0.026 0.043 0.252 0.023
3.66 0.022 0.021 0.045 0.227 0.031
3.62 0.025 0.037 0.056 0.212 0.023
3.6 0.037 0.033 0.063 0.242 0.022
3.69 0.030 0.005 0.063 0.281 0.024
3.71 0.028 0.026 0.042 0.211 0.022
3.66 0.029 0.038 0.058 0.258 0.023
etc.

Table 1 (continued) selected measurements [1]

x7-S8 xs - C X9 - Si y1-Re y2 - Rm y3-A

0.005 1.015 2.191 266 401 22

0.006 1.026 2.223 267 406 23

0.007 0.016 2.098 259 396 22.5

0.005 0.017 2.071 268 404 25

0.003 1.02 2.25 274 413 23.5

0.005 0.989 1.945 259 405 23

0.003 1.036 2.199 269 412 24

0.004 1.031 2.082 273 416 22.5

0.005 1.02 2.12 263 403 23.5
etc.

One of the ways how to detect multicollinearity is to calculate the correlation matrix for the pairs formed from
the variables x1 - x9, and find the elements of the matrix of the greatest magnitude (in absolute value). In our
case, the only pair that showed a significant linear dependence was the pair xs and xs, in the case of which the
correlation coefficient R(xs, xs) = -0.55 with the p-value of 0.0017. By excluding one of these variables from
the model, the multicollinearity is reduced. It does matter, however, which of the two variables is actually taken
out of the model. One way of proceeding is as follows: We find the regression model Y = bo + bix1 + ... + boxg
and calculate the coefficient of determination R2 =0.56. Subsequently, we find the model without

a) the factor xs or
b) the factor xs

and calculate R?(Y, x), where x is the vector of the included variables. The factor whose elimination lowered
the criterion R2 more is considered more significant and is kept in the model. In our case:

a) R?(without xs) = 0.34,

b) R?(without xs) = 0.38.

Leaving out the factor xs resulted in a more profound drop in R?, it is therefore kept in the model, and the factor

Xs is removed from the model. If we want to keep all the variables in the model, we may opt for the technique
of ridge regression.
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The model quality is judged, among other things, also based on the variability of the estimated coefficients b;.
Let us use the sum of the coefficient variances as a criterion of the model quality, the criterion being denoted
here by the symbol s2(b). For the full model with all the factors, s2(b) = 961,284.26. For the model without the
factor xs, s?(b) = 773,683.58, i.e. it is lower, but not by orders. This way of tackling the problem of
multicollinearity lies basically in altering the input data.

The same problem may, however, be also addressed by selecting a different general formula for the parameter
estimation. Instead of the basic formula

-1
b=(x"x)'x7y (1)

the ridge-method formula [2] can be used,

b(k)=(X"X + k1) XTY, k=0, 2

where [ is the unit matrix and k is a constant to be selected. For k = 0, we get (1). A higher k reduces the sum
s2(b), also often denoted as g1 (see Table 2). It can be calculated as [2]

2
Zei
_ i

g, (k)=s" [Tmce(XTX + k.I)_1 - k.Trace(XTX + k.l)_z]; st =

n—p @)

Table 2 Progress of the criteria g1 and g2 (see below), depending on k

k g1 g2 g1+g2
0 961,300.4 0.0 961,300.4
0.00001 690,909.5 91,223.2 782,132.7
0.00002 530,489.8 263,525.9 794,015.7
0.00005 30,1524.8 794,205.2 1,095,730.0
0.0005 46,870.3 2,736,531.7 2,783,402.0
0.001 26,940.1 3,040,870.0 3,067,810.1
0.005 4,839.1 3,336,366.2 3,341,205.3
0.01 2,004.2 3,379,806.4 3,381,810.6
0.05 258.5 3,417,101.4 3,417,359.9
0.1 79.5 3,421,875.0 3,421,954.5
0.5 18.3 3,426,528.5 3,426,546.8
0.7 12.7 3,426,905.2 3,426,917.9
1 8.6 3,427,203.6 3,427,212.3

The table shows a striking drop in the variability s2(b) = g1. At the same time, however, an estimator bias, an
undesired property, is also introduced. The amount of bias is denoted g2 and calculated [2] as

2
g,(k) =k (X X + k1)’ b @

When the ridge approach is used, one looks for a reasonable balance between the bias and variability of the
estimator. This is why the criteria g1 and g2 are summed. Typically, the sum drops first and after reaching a
minimum (here for k = 0.00001), it rises again. Table 3 is another example that shows better the typical
progress of the summation g1+g2 for other data. Here, the minimum of the sum is achieved at k = 100.
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Table 3 A typical development of the criterion g1 + g2

k g1 g2 g2+ g

0 9,301,666.044 0 9,301,666.044
0.2 8,904,236.44 862.73 8,905,099.175
0.4 8,531,744.49 3,306.57 8,535,051.069
0.6 8,182,146.65 7,134.94 8,189,281.597
0.8 7,853,604.48 12,175.02 7,865,779.514

1 7,544 ,460.47 18,274.64 7,562,735.121
10 2,101,890.47 509,129.64 2,611,020.121
100 64,218.87 1,555,142.31 1,619,361.18
150 30,199.67 1,644,990.82 1,675,190.49
200 17,488.8 1,692,863.54 1,710,352.34

The regression model for the data in Table 1 results in quite different estimated coefficients, if they are
calculated according to (2), as shown in Table 4.

Table 4 Coefficients calculated by LS and ridge

i bi b(0.5) b(0.00001)

0 262.89786 13.8580715 239.699419
1 -24.0293289 47.4426684 -19.1624544
2 -47.7566488 0.45006282 -34.0053101
3 55.8123267 -0.10095729 36.1541954
4 -162.993893 0.68916138 -125.623855
5 5.9176775 2.79804419 3.77908707
6 697.117097 0.50974087 659.081333
7 -1,685.90698 -0.12801234 -1,390.55369
8 2.50380999 3.06643996 2.36655636
9 40.8065705 34.9346125 42.5952223

Table 5 compares the empirical and fitted values of the dependent variable, based on the estimated

coefficients b(k).

Table 5 Fitted and empirical values of the modelled variable

i Fitted Yi Yi
k=05 k =0.00001
1 265.9554 269.5311767 266
2 268.4941 268.8075543 267
3 261.1163 260.4965191 259
4 260.5891 266.5144258 268
5 267.9818 273.825484 274
6 256.3766 256.3849634 259
7 269.7695 270.6900701 269
8 266.4057 264.1765056 273
9 265.4696 264.5632228 263
etc.
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The vector of all the fitted values is calculated by multiplying the matrix of regressors X and the vector of
estimated coefficients b(k): Fitted Y = X-b(k).

3. MULTICOLLINEARITY CURED BY VARIABLE TRANSFORMATION

Multicollinearity can also be treated via a suitable variable transformation, if the regression model is selected
in such a way that allows the transformation to be successfully exploited. Let us consider the model of the form
y = bo + bix + b2x? + noise. Table 6 contains a real data sample to be used for this illustration.

Table 6 A data sample with multicollinearity [3]

Y X x?
252 78 6,084
259 73 5,329
256 77 5,929
256 68 4,624
267 85 7,225
270 86 7,396
261 83 6,889
231 76 5,776
etc.

Calculating the correlation between x and x2, we get the following correlation matrix (see Table 7).

Table 7 Correlation matrix for the pair x and x2

X

X2

X

1

0.998949

X2

0.998949

1

The extent of the dependence can be reduced in this situation by centralizing the x variable. The mean of x is
80.4, therefore the new, centralized variable is x1 = x - 80.4. The correlation matrix now is shown in Table 8.

Table 8 Correlation matrix for x1 and x12

X1 X12
X1 1 -0.50537
X12 -0.50537 1

In absolute terms, the correlation dropped by half. Comparing the estimated coefficients by the sum s?(b) for
the (non)centralized regressor x, we get the following results (see Table 9).

Table 9 Regression with the noncentralized x

bi s(bi) t Stat p-value
bo 530.6425 184.135| 2.881813| 0.006546
b1 -8.60404 | 4.720552| -1.82268| 0.076442
b2 0.064905| 0.030114| 2.155332| 0.037711

The regression model is Y = 530.6425 - 8.60404x + 0.064905x2, and
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sum s? (b) = 184.1352 + 4.7205522 + 0.0301142 = 33927.97.

The correlation is R = 0.77 with p-value = 0.000 in the related ANOVA. The Durbin-Watson statistic equals
2.36 (p-value = 0.10).

For the centralized x, the results are in Table 10.

Table 10 Regression with the centralized x

bi S(bi) t Stat p-value
bo 258.4356 1.781643 145.0546 1.37E-52
b1 1.832723 0.250721 7.309819 1.1E-08
b2 0.064905 0.030114 2.155332 0.037711

The sum s2(b) =3.24, far lower. The regression model is Y = 258.44 + 1.83x1 + 0.06x42, with the correlation
coefficient R = 0.77 and p-value in the ANOVA. The Durbin-Watson statistic = 2.36 with the p-value 0.10.

The regression estimates of the two approaches are different. Regressing one variable on another, centralized
variable brings better results also in the case of having input data with errors. For instance, by changing Y1 =
252 erroneously to Y1 = 2.52, we get the following results (see Table 11).

Table 11 Effect of erroneous data on the sum s2(b)

Data and method bi Sum s%(b)
1,311.263 795153.3

1 Wrong Y1, noncentralized data, LS

-29.2589

0.199275
2 Wrong Y1, centralized data, LS 246.9931 75.88

2.784485

0.199275

3 Correct Y1, centralized data, LS 258.4356 3.23

1.832723
0.064905

It is worth noting the value of the coefficient bo = 1,311.263 in approach (1). It is very different from the same
coefficient obtained from the correct data. By contrast, approach (2) is not affected much by the data errors.
The summation criterion s?(b) is worst by far in (1). A more systematic approach, however, to estimate
regression coefficients from erroneous data is the robust-regression approach (RLS).

4, CONCLUSION

Except for the problem of multicollinearity, in metallurgical practice, imprecisely measured or wrongly stored
data occur frequently, which damages regression models severely. To avoid these problem, it is either possible
to try to detect and remove the errors in the data, or use robust methods, which are less sensitive to erroneous
data inputs. Using specific data from the foundry industry (see Table 1), which contained wrong information of
a hundred - times imprecision order about the amount of carbon presence (x1), several approaches to
modelling the yield strength (y1) were verified. The model was searched with the Huber and Busquar method,
and was compared to the classical regression approach.
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Another problem, repeatedly encountered in metallurgical data and presented to the conference participants,
though not further pursued in this paper, concerns heteroscedasticity (nonconstant variance of model
residuals). Its consequence is an increased instability, or variance, of the estimated regression models
employed in metallurgy. In this case, the classical least-squared (LS) model estimation was compared to the
generalized least-squared (GLS) procedure. The metallurgical regression models working with GLS showed a
lower - in - order variability of the estimates: for the case of the data from the foundry industry, the sum of the
variances of the estimated coefficients was 45 times lower than that for the case of the GLS method.

We believe that in the foundry industry, and more generally in the metallurgical practice, it is an absolute
imperative to pay due and extra attention to the data worked with when seeking a regression model, and opt
for the corresponding (robust) regression procedures, otherwise solid model - based conclusions in this
industrial branch are far from guaranteed.
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