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Abstract

Presented works investigates a possibility of using modeling based on artificial neural network for prediction
of liquidus temperatures of low-alloyed steels. Paper describes the methodology of creating such model by
tools incorporated in commercial software MATLAB. Neural network is trained, validated and tested and
previously unseen data measured by DTA method are used as new input data. Results are then compared to
those measured and calculated by commonly used software for such applications like IDS and Thermo-Calc.
Performance of these three modeling approaches is discussed.
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1. INTRODUCTION

Advanced computer simulation technology is a powerful tool which can be used to model critical phenomena
of heat transfer and fluid flow and their relationships to processes occurring during metallurgical manufacturing
operations like casting, forging or heat treatment [1]. Computational models enable the design and production
of more economical and higher quality castings. In order to obtain reliable and accurate results from a
simulation of the usually complex processes accurate and realistic values of thermophysical properties are
necessary but reliable data for many materials of industrial interests are limited. Experimental determinations
of these are difficult and often expensive also.

Accurate knowledge of liquidus temperature is necessary for setting of optimum casting temperature in casting
processes. The data for specific steel grades are often difficult to obtain. They are not available or inaccurate
[2]. Best case scenario is represented by aqcuisition of values from measurement by some thermal analysis
method, e.g. differential thermal analysis.

There are many empirical equations derived using regression analysis to estimate the liquidus temperature
(To) of steels [3]. Comparing of various equations prediction capability and validity is difficult as they are usually
closely related to the studied alloys [4]. So there is no equation covering the whole variety of steel compositions
from low-alloyed to high-alloyed steels, eg. stainless steels. The main problem lies in the simple form of the
equations - they are usually linear functions of compositions. So there is an assumption of factor independence
and linear additivity [5]. In parametric predictive systems like that, the variable to be predicted (TL.) is considered
as a function of predictor variables (element content) that are assumed to have independent effects on TL.
This would maybe accurately describe the behavior of two-component systems, e.g. Fe-Si but in reality effect
of Si content in real multicomponent steels on Tv is not so clear as shown in Figure 1.

There are also software packages which allow to compute phase transformation temperatures and values of
thermophysical properties dependent on composition and temperature. For example IDS (Inter Dendritic
Solidification) is based on thermodynamic approach, more specifically on phase-field method [6]. Another
thermodynamic approach is represented by CALPHAD method [7]. This method is used by software Thermo-
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Calc. There are also other software packages based on these methods but they were not included into this
paper.
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Figure 1 Effect of Si content on a liquidus temperature [own]

Paper presents a preliminary work aimed on prediction of liquidus temperature from steel grade composition
by using an artificial neural network method (ANN). Using of methods based on ANN in the material
engineering became a promising way for predicting a wide variety of steel properties like thermal conductivity
[8-10], specific heat capacity [9], electrical conductivity [11], coefficient of thermal expansion [12] or phase
transition temperatures [13]. It is even possible to propose a new alloy composition based on demanded
material properties [14].

2. ARTFICIAL NEURAL NETWORK APPROACH

Neural network has the advantage of being fast, flexible efficient and accurate tool to predict and model highly
nonlinear multidimensional relationships. Due to the flexible modeling and learning capabilities of ANN, it is
possible to solve complex problems without any mathematical relationships between inputs and outputs. This
method also reduces the need for experimenal work and time-consuming regression analyses.

2.1. Artificial neural networks

An ANN has non-linear basic processing units called neurons. The neuron model and architecture of a neural
network describe how a network transforms its inputs into outputs. The neural network architecture consists of
multiple layers of neurons which have a summing up junction and a transfer function. A single neuron
(Figure 2) transmits an input p through the connection that multiplies its strength by the weight w to form a
product wp. A bias b is then applied - it is much like a weight with constant value of 1 but can be omitted. The
transfer function then produces the neuron output Y using the product wp and bias. There are various transfer
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functions, most commonly used are sigmoid and linear. The central idea of an ANN is to adjust weights and
biases or the network itself adjusts these parameters to achieve accurate results - desired output values.
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Figure 2 Simple neuron

The most commonly used neural network architecture is given in Figure 3:
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Figure 3 Neural network architecture

It consists of one input layer, one output layer, and one hidden layer. The added hidden layer contains
intermediary parameters that are automatically generated by the model; the hidden layer is necessary in case
of complex non-linear relationships between the inputs p and the output Y. One or multiple neurons connect
the input to the hidden layer. Similarly, one or multiple neurons connect the hidden layer and the output layer.

2.2. Used method

Thirty-seven low-alloyed steel grades were used for training, validating a nad testing of ANN. These element
contents represent inputs to the model. Output of model is a value of T.. The chemical composition of the
steels used in modeling is summarized in Table 1. Source of these data is [4].

Table 1 The composition of steels used for the creation of the ANN [own]

Content (wt%) C Mn Si P S Cu Ni Cr N Mo \' Fe
minimum 0.01 0.02 | 0.12 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 0.00 | 0.00 | 0.00 | bal.
maximum 1.20 1.63 | 2.07 | 0.04 | 0.04 0.2 330 | 5.00 | 0.02 | 0.99 | 0.14 | bal.
mean 0.46 0.72 | 043 | 0.01 0.01 | 0.04 | 054 | 092 | 0.01 | 0.16 | 0.01 | bal.
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The MATLAB Neural Network Toolbox is used for the optimization of the ANN architecture. To avoid over-
fitting inputs and targets are subdivided into three subsets - training (70 %), validation (15 %) and testing
(15 %) subset randomly. Over-fitting leads to inability of the network to provide accurate predictions for new
sets of inputs but it can only accurate correlate the given inputs.

Training subset (only) is used to develop the model. The validation subset is used to limit over-fitting -
preventing the model from memorizing only a given data set and inability to model a new data set with unknown
values of targets. The test subset is used for checking the generalization capacity of the network - ability to
provide accurate prediction of unknown T. for new composition of steel and temperature.

Several ANN were build, for further work ANN with lowest mean absolute error in prediction was chosen.
Neural network consisted of multilayer perceptron (MLP) with 12 input neuron for element contents 6 hidden
neurons in hidden layer and 1 output neuron with tanh activation function between inputs and hidden layer and
exponential transformation function prior to output neuron was used. It has to be stated that there is no certain
relationship between number of hidden neurons and performance of ANN. It can be ilustrated in Figure 4
where coeffiecient of determination R? for predictions (test subset) is plotted against number of hidden neurons.
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Figure 4 Number of hidden neurons vs. R? (test subset)
3. RESULTS

Liquidus temperatures of another thirty-three real steel grades were then modeled using the selected ANN.
The composition range of these grades is in Table 2.

Table 2 The composition of steels used for evaluating of the ANN model [own]

Content (wt%) Cc Mn Si P S Cu Ni Cr N Mo \'/ Fe
minimum 0.07 | 0.32 | 017 | 0.01 0.00 | 0.08 | 0.01 0.03 | 0.00 | 0.00 | 0.00 | bal.
maximum 1.03 | 143 | 0.94 | 0.02 | 0.01 0.15 | 2.34 | 5.00 | 0.01 1.22 | 0.92 | bal.

mean 0.35 | 0.85 | 0.32 | 0.01 0.00 | 0.08 | 0.22 | 093 | 0.01 0.18 | 0.09 | bal.
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Results were compared with measured values by DTA method. Also comparison of the ANN performance with
results obtained from IDS and Thermo-Calc has been done.

The selected ANN based on the MLP12-6-1 architecture performed like this: the maximal absolute error in
prediction was 10 °C, mean absolute error 0.9 °C with a coefficient of correlation R=0.92. Correlation between
predicted and measured values is plotted in Figure 5, histogram of deviations from measured values is in
Figure 6.
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Figure 5 Measured vs. predicted values by ANN

Table 3 contains performance results for ANN, IDS and Thermo-Calc calculations for mutual comparison. It
can be seen that difference between results from ANN and IDS is generally small and almost negligible but
IDS seem to be slightly more reliable as values of R? indicates.

Nevertheless approach based on ANN showed significantly better accordance between predictions and
measured values than computations with Thermo-Calc software. One of the possible reasons of this should
be in fact that not all of the elements from steel composition were used in calculations but this was also the
case of IDS and ANN calculations.

Table 3 Comparison of results obtained by different modeling approaches [own]

ANN IDS Thermo-Calc
maximum of absolute error (°C) 10.0 10.0 28.0
mean absolute error (°C) 0.9 4.3 6.7
maximum relative error (%) 0.68 0.68 1.88
mean relative error (%) 0.18 0.29 0.45
correlation coefficient R 0.986 0.99 0.94
coefficient of determination R2 0.920 0.982 0.883
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Figure 6 Histogram of errors

4, CONCLUSION

Neural network predictions of liquidus temperatures brought promising results in comparison with commonly
used software tools like IDS (Inter Dendritic Software) and Thermo-Calc.

Maximal absolute error in prediction was 10 °C, mean absolute error 0.9 °C with a coefficient of correlation
R=0.986. These values are at least comparable with those from IDS calculations where a maximal absolute
error was the same 10 °C, mean absolute error was higher - 4.3 °C and value of R=0.99. Predictions based
on Thermo-Calc calculations with TCFE8 database came as such: maximal absolute error 28 °C, mean
absolute error 6.7 °C and value of R=0.94.

Approach based on ANN is a suitable solution for this specific case of liquidus of steel prediction, further work
has to be done for other phase transition temperatures for which data are even less available in common
literature (solidus temperature). It should be stated that presented model was created from data published in
common literature so procedure can be repeated by almost everyone even with open-source software
(Octave).
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