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Abstract

The peak point coordinates (i.e. peak stress, peak strain) play a significant role in case of a flow curve
description. These coordinates are strongly dependent on the temperature and strain rate, so they need to be
related to these thermomechanical circumstances before use in the flow stress models. In this research, the
experimental peak point coordinates of the C45 and 38MnVS6 steels were described in a wide range of
thermomechanical conditions by use of two different methodologies. The first one was based on the ordinary
predictive relationships utilizing the well-known Zener-Hollomon parameter. The second one was based on
the artificial neural network approach. The aim was to compare appropriateness of these methods. The results
have suggested better aptness in case of the assembled neural networks.
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INTRODUCTION

The peak point coordinates (i.e. peak stress, o,, and
peak strain, &) describe the maximum flow stress level
(peak point) of hot flow curves; see Figure 1 [1]. It is
well known, these curves express the dependence of
natural flow stress of formed (e.g. rolled, forged, etc.)
material on the magnitude of strain under various
levels of thermomechanical conditions (i.e. strain
rates, temperatures). Flow curves are commonly
assembled from the experimentally acquired data
(based on compression or torsion tests) [2].
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Experimentally compiled curves are usually
mathematically described because of further computer
simulations. The peak point coordinates then play a
substantial role in case of this description - they are
implemented into the so-called flow stress models [3].
The peak point coordinates are dependent on the magnitude of strain rate and temperature - that means they
need to be related to these thermomechanical variables before use in the flow stress models. Different
approaches can be then used to describe these coordinates. Commonly used methodology utilizes the known
predictive relationships, which can be treated by regression methods [4]. These relationships usually relate
the examined coordinates to the well-known Zener-Hollomon parameter (connecting the mutual effect of
temperature and strain rate). Another (often more reliable) approach is to use of intelligent algorithms, such as
artificial neural networks (ANN) [5]. The aim of this paper is to compare reliability of commonly used equations
of peak point description with the artificial neural network approach. Experimental values of the peak point
coordinates of the C45 and 38MnVS6 steels will be used for the purpose of this investigation.

Figure 1 Examples of hot flow curve types and
related peak point coordinates [1]
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1. EXPERIMENTAL MATERIALS

The experimental peak point coordinates of the C45 medium-carbon steel and of 38MnVS6 micro-alloyed steel
were obtained from the experimental flow curves of the examined steels. These curves were assembled on
the basis of the uniaxial hot compression datasets. Whole experimental procedure was in detail described
previously in [6] for the C45 steel and [7] in case of the 38MnVS6 steel, respectively. The range of the tested
thermomechanical conditions of the C45 steel was as follows: Temperatures of 1553 K, 1473 K, 1373 K,
1273 K and 1173 K and the strain rates of 0.1s™", 1s7', 10s™" and 100 s™'. The range of the tested
thermomechanical conditions of the 38MnVS6 steel was as follows: Temperatures of 1553 K, 1473 K, 1373 K,
1273 K and 1123 K and the strain rates of 0.1 s7', 1 s7', 10 s™" and 100 s™'. So, there are twenty combinations
of the thermomechanical parameters (thus twenty peak point coordinates) for the both examined steels.

2. PEAK POINT DESCRIPTION BY THE COMMONLY USED RELATIONSHIPS

The peak point coordinates, i.e. the peak strain, ¢, (-), and the corresponding peak stress, o, (MPa), see
Figure 1, belong to the temperature, T (K), and strain rate, € (s™"), dependent parameters. Mutual effect of
these variables is commonly expressed by the Zener-Hollomon parameter, Z (s™1) [8]:

Z = é‘exp(%) )

The R (8.314 J-K'-mol™") is the universal gas constant, and Q (J-mol™") is the hot deformation activation
energy. The peak strain and peak stress values could be then described in wide range of thermomechanical
conditions as follows from the equations (2) and (3) [9]:

egp=a-Zb (2)

1 .|z
Op=—" arcsinh \/; (3)

In the above mentioned equations, A (s™"), a(-), b(-), n(-) and a (MPa™') are material constants. The
calculation of a and b is treated by regression analysis of the equation (2). The calculation of A, n, Q and a
can be done by the regression analysis of Garofalo equation; in detail discussed in [9].

The values of & and o, were calculated for all sets of the thermomechanical circumstances of the both
examined steels via the equations (2) and (3). All required material constants of these equations are presented
in Table 1.

Table 1 Material constants of the relationships predicting the peak point coordinates

Material A(s™) a() b () n(-) Q (kJ-mol) a (MPa™)
c45 3.96-10" 3.3-1073 0.2 4.3 292 9.5-1073
38MnVS6 3.25-10"2 2.5-1073 0.2 46 316 8.6:1073

3. PEAK POINT DESCRIPTION BY AN ARTIFICIAL NEURAL NETWORK APPROACH

An artificial neural network (ANN) approach belongs among so-called intelligent algorithms. These methods
bring remarkable results on the field of nonlinear tasks [5, 10]. Multi-layer Feed-Forward Artificial Neural
Network with the Back-Propagation (BP) learning algorithm is the most used type of ANN in case of the material
modeling [11, 12]. This type of ANN was used to create four neural networks - two networks for each of the
examined steels (always one network to predict of ey,-values and one to predict of op,-values). Architecture of
the created networks was quite simple. Each network connects the input variables (temperature and strain
rate) with the output variable (peak strain or peak stress) via set of artificial neurons arranged in three layers,
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see Figure 2. The input layer includes two neurons. These neurons are associated with the vectors of the
input variables - no calculations run inside of them. The neurons of the input layer are connected with the
neurons in the one hidden layer via set of synaptic weights (w;), and the neurons of the hidden layer are then
connected with the one neuron in the output layer via another set of weights (wj) (the output of this neuron is
the vector of predicted output variable). Each neuron of the hidden and output layer is further linked with a
unique bias value (b;, bx). Neurons of the hidden and output layer are activated by the proper transfer function;
nonlinear in case of the hidden layer and pure linear in the output layer, respectively. The processes inside of
the network can be divided in two basic steps. The first one is the feed-forward of the function signal;
mathematically described in [13]. The second one is the back-propagation of an error signal to enable the
following network training [14].

Back-Propagation of error signal

A

log (Strain rate)

Peak point
—

—_—
coordinate
—_—

Temperature

Input layer Hidden layer Output layer

>

Feed-Forward of function signal

Figure 2 Schematic illustration of the used artificial neural network architecture

The aim of the network training is to minimize a performance function to achieve reliable results. In this
research, the performance function was set as the mean square error (MSE) [12]:

MSE = - - X7, (E;)? (4)

The n represents the number of data points involved in calculations, E; is the i-th absolute error of the output
layer neuron (i.e. difference between the network output and target value) [12]. The minimization process
involves a searching of an appropriate set of the weights and biases to get a low MSE value [14]. The process
of minimization was performed by the Levenberg-Marquardt optimization algorithm [15, 16].

However, as the very first step (before the network assembly), it is highly important to split the experimental
dataset into three parts - Training set (ca. 60 %) to train the network, Validation set (ca. 20 %) to validate
network response during training process, and Testing set (ca. 20 %) to verify the network prediction capability
out of the training range [17]. Table 2 clearly shows the split of datasets of the experimental values of the
examined steels - training set, validation set and testing set, respectively.

Table 2 Split of the datasets of the experimental values of peak point coordinates

C45 / 38MnVS6 1553 K 1473 K 1373 K 1273 K 1173 K/ 1123 K
0.1s™ X X X X
1s™ X X X X X
10 s™ X X X X X
100s™ X X X X X
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It must be mentioned that the values of the input variables entering the input layer are distributed in distinct
ranges and even dimensions. This fact then leads to a poor convergence speed and prediction accuracy of
neural network. Therefore, it is important to normalize these data to ensure they will be dimensionless and in
an approximately same magnitude [13]. In this research, the normalization process was performed as
described in [17, 18].

The key factor influencing the network performance is the number of neurons in the hidden layer. To determine
an ideal number of hidden neurons it is necessary to train the network for various numbers of neurons in the
hidden layer. Then, it is possible, based on the returned results, to reveal an appropriate form of the network
architecture [12, 13]. Figure 3 graphically displays the influence of neuron number in the hidden layer on the
magnitude of MSE for the case of the each trained network. The appropriate number of hidden neurons of
given network is, of course, clearly identified by the lowest value of MSE.
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Figure 3 Performance of the assembled artificial neural networks at different hidden
neuron levels

4. ASSESSMENT OF THE PERFORMANCE OF SURVEYED APPROACHES

In order to evaluate the prediction capability of the examined approaches, the relative percentage error, n (%),
is introduced to compare deviations between experimental and calculated peak point coordinates in case of
each combination of temperature and strain rate. The i-th error, n; (where i = [1, 20] c N), is expressed as [12]:

n = YX)=Yi 100 (5)
Vi

In the equation (5), yi is the i-th experimental value of an examined peak point coordinate and the y(x;) is the
i-th calculated value [12]. The n-values of the peak point coordinates are compared in case of both approaches
in Figure 4. In case of the 38MnVS6 steel, the n-values of the peak strain are held below of 10% border with
regard to the ANN approach. While, in case of equation (2), the 10% border is overcome in many cases - in
one case, the n-value reaches even of 67.80 %. Similar behavior can be observed also in case of the C45
steel. In case of the ANN approach, the n-values of the peak strain, with exception of three cases, are again
held below of 10% border. With regard to equation (2), almost all of the n-values are out of the 10% range,
and one of them reaches even of 60.44 %. Quite different behavior can be observed with regard to the
description of the peak stress values. It seems like using the classic equation (3) brings slightly better
performance then ANN approach. Note, the larger range of n-values does not mean the poorer performance.
For this reason, two other indicators, namely average value of n-values (u) and standard deviation (o), are
further used to augment the evaluation [12]:

1
p==-Xiam (6)
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Figure 4 Comparison of relative percentage error of predicted values of the peak point coordinates
with the experimentally acquired

The n is the sample number of relative percentage error (n = 20). Average value, u, measures the magnitude
of the dataset, whereas standard deviation, o, denotes the degree of dispersion and provides an idea of how
close the entire dataset is to the average value. The p-value going to zero and low value of g imply high
accuracy of description [12]. As shown in Figure 4, y-values and o-values of the ANN description are more
favorable in comparison with the standard equations (2) and (3). However, the exception can be found in case
of the peak stress description with respect to 38MnVS6 steel. This fact is confirmed by the graphical
presentation of the n-scatter.

5. CONCLUSION

Peak point coordinates (i.e. peak strain and peak stress) of the experimental flow curves of the C45 and
38MnVS6 steels were mathematically described by two different approaches. The first one is based on the
widely used relationships describing the peak point coordinates with respect to the well-known Zener-Hollomon
parameter (connecting the mutual effect of temperature and strain rate). The second one utilizes the multi-
layer feed-forward artificial neural networks with the back-propagation learning algorithm. It can be concluded,
based on the achieved results, the neural network approach exhibits mostly better prediction capability. So,
the peak point coordinates predicted by the neural network approach can be then appropriate to use in the
process of modeling of given flow curves via known flow stress models.
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