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Abstract 

The paper describes a non-parametric approach to the statistical analysis performed on data obtained during 
investigation on the airfoil blade traces. This approach releases us from limits of many conditions. Typical 
statistical analysis of data, with factorial (qualitative) control approach, bases on many theoretical assumptions, 
with the most important and the most influential one: the normality of random noises distributions (usually 
named ‘errors’). The solution is the bootstrap approach, originally proposed by Efron in 1979, later in 1995 
described in details by Shao and Tu. The bootstrap is formally the method based on random resampling with 
replacement from the source dataset. It allows to identify the whole distribution shape of raw data and related 
confidence intervals without additional assumptions about particular distribution. The paper presents the 
practical case: the factorial approach performed for the fixed-effect analysis of the relation between secondary 
dendrite arm spacing and carbides for the airfoil blade traces. The paper contains notes on encountered 
difficulties and possible guidelines for similar analysis. 
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1. INTRODUCTION 

Experiments may be conducted and analyzed in two general manners [1, 2]:  

• in the passive mode, when the experimenter is only an observer noting values (if observed variables 
are quantitative) or labels (if observed variables are qualitative) describing the state of the investigated 
object or process; in such experiment the cause-and-effect relationships may be unknown [3], 

• in the active mode (usually known as designed experiment), when the experimenter actively changes 
settings of the investigated object or process e.g. [4], typically according to a previously prepared plan 
named experimental design; in such experiment the cause-and-effect relationship need to be known 
before the experiment is conducted [3, 5]. 

The industrial practice focuses only on the second kind of experiments i.e. on the designed experiments [6]. 
The designed experiments were known in 19th century however the process of their construction and analysis 
were not formalized. The first scientist who prepared designed experiments and their analysis based on strict 
mathematical formulas was R.A. Fisher. His concept, known as “latin squares” [7], was derived from the 
analysis of variance (ANOVA) procedure [8]. Later, his idea was developed into factorial designs by Yates [9], 
response surface methodology by Box [10] and finally formalized by Kiefer and Wolfowitz [11]. The formal 
mathematical model [12] founding the core of such domain known as ‘design of experiments’ includes the 
specific random term describing ‘noise factors’. The noise factors are the surrogate name for all uncontrolled 
environmental disturbances. The well-known parametric analysis assumes that the joined effect of noise 
factors is described by the normal distribution with the mean of zero value and the unknown variance [6, 13] 
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i.e. N(0,σ). The rest of the analysis procedure bases on this assumption and leads to the t Student distribution 
as a shape describing probabilistic uncertainty of the obtained results [6, 13]. 

Practical observations, especially well-known box-plots, lead to the conclusion that such assumption is often 
weakly satisfied [14, 15] and as the result one cannot be sure about t Student distribution as a shape of results 
uncertainty distribution and bounds of confidence intervals [16-19]. The solution of such problem are analytical 
procedures weakly related to the specific probabilistic distribution. They are known under common name ‘non-
parametric methods’. This set of methods includes among others solutions based on ranks e.g. Kruskal-Wallis 
ANOVA [20], solutions based on re-sampling e.g. Efron’s bootstrap [21] or the specific solution based on 
Wilkes’s theorem i.e. Owen’s empirical likelihood ratio [22, 23]. However both solutions, Efron’s and Owen’s 
base on an intensive numerical computations but Efron’s solution is easy to implementation while Owen’s 
rather not. The non-parametric methods are especially useful for the fuzzy approach [24, 25] which is very 
suitable for vague data, uncertain data or incomplete datasets [26, 27]. 

The following sections will discuss and apply the bootstrap method to analyze the influence of the trace location 
onto the SDAS measurement. 

2. MATERIALS 

Nickel-based superalloys are used mainly in turbines and produced in an investment casting process useful 
to obtain complex shape geometry. Studies were performed on the IN 713C superalloy [28]. Castings were 
cut off and the cross-sections were prepared as metallographic samples with the etched surface. The 
microstructural investigations of the cross-sections were conducted on Hitachi S-4200 SEM (Figure 1).  

 

Figure 1 The carbides detected in the selected image of a cross-section 

Next, microphotographs were analyzed by image analysis methods [29] (Met-Ilo program) to estimate 

quantitatively parameters describing (γ + γ’) eutectic islands occurred in the superalloy. Six different traces 
were analyzed resulting in the dataset of 6 groups [30] with 31, 49, 80, 75, 64 and 61 values, respectively. The 
dataset contained secondary dendrite arm spacing (SDAS). The obtained raw data were compared to find if 
the different location of traces differentiate the measurement of SDAS. 
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3. METHODS 

3.1. Boostrap approach 

The bootstrap method, described in details by Shao and Tu [31], bases on processing of the dataset iteratively 
re-sampled from the original raw dataset. The idea of the method is presented in Figure 2. 

 

Figure 2 The scheme of the bootstrap method based on residuals 

The key issue in the bootstrap is to make a proper identification of the random term built into the analyzed 
process. The main assumption of the bootstrap is focused on this term: its realizations should be independent 
and identically distributed (acronym i.i.d). In the passive experiment, the realization of the term is a whole 
measurement. In the active experiment, where a model is built according to the assumed cause-and-effect 
relationship, usually an error of the model (difference between prediction and measurement) is treated as a 
realization of i.i.d term. 

It leads to the following algorithm: process a raw dataset, identify parameter of an assumed model, evaluates 
its errors and next iteratively randomly draw new errors dataset from the original errors dataset, add them to 
original predictions generating bootstrapped predictions, identify the bootstrapped model and process it further 
collecting obtained results. After a large number of iterations, collected results may be evaluated by statistical 
methods resulting in a whole distribution instead of the one number as in classic approach. 

3.2. Predictive model 

The predictive model was selected as a fixed-effects model with one factor. The model is constructed from 
some additive terms: average response μ and vector of main (linear) effect dependent on the single factor 
(trace id).  
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The model has the following formula: 

 
 (1) 

where: 

yi - measured eutectic area for i-th trace, 

µ - average measurement, 

Ai - main (linear) effect of trace id, 

i - enumerator of a investigated traces (6 pieces). 

4. RESULTS AND DISCUSSION 

The analysis of the raw dataset led to the following base model: 

  
(2) 

Its main effect plot is presented in Figure 3. 

 

Figure 3 The main effects plot revealing the strong influence of a trace location on measured SDAS 

The bootstrap was performed for 10000 iterations, because such a number allows easy identification of bounds 
for 95 % confidence interval (located at 250 and 9750 positions inside sorted dataset columns). The yielded 
statistics for the model constant and effects are presented in Table 1 simultaneously with values obtained from 

classic parametric analysis. As one can see, the bootstrap gives values unavailable in classic approach i.e. 
bounds of the confidence interval for T6 effect. 
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Tests of the normality were rejected for all effects T1…T6. Only constant was not rejected however at very low 
p-Value = 0.06. It reveal that classic assumption of normality is not satisfied and bootstrap based results and 
more reliable in this context. The confidence interval bounds for all effects have different signs i.e. zero value 
is located inside confidence intervals. It may be interpreted as the statistical non-significance for all effects. It 
means that location of traces has no significance influence on measured values of SDAS. 

Table 1 Descriptive statistics of the model constant and effects obtained from the bootstrap simulation 

Model term 
Mean -95 % CI +95 % CI 

classic bootstrap classic bootstrap classic bootstrap 

constant 26.13 26.14 22.67 22.82 29.60 29.73 

T1 8.32 8.30 -1.49 -0.81 18.13 18.64 

T2 -4.18 -4.14 -12.26 -11.55 3.90 4.26 

T3 -2.15 -2.18 -8.83 -8.55 4.53 4.65 

T4 0.72 0.75 -6.12 -5.80 7.56 7.73 

T5 -1.04 -1.00 -8.30 -7.93 6.23 6.69 

T6 -1.67 -1.72 - -5.88 - 8.87 

5. CONCLUSIONS 

1) The investigation revealed that the location of traces has no significance influence on measured values 
of SDAS. 

2) The bootstrap approach revealed that the normality assumption assumed in the classic approach is not 
satisfied in this data and cannot be set as a base for reliable statistical inference. 

3) The yielded values obtained from the bootstrap approach are consistent with means obtained from the 
classic approach however bounds of the confidence intervals differ even up to 46 %. 

4) Further analysis should concentrate on more subtle non-parametric analytical techniques like Owen’s 
empirical likelihood ratio [22] to obtain more accurate bounds and regions of confidence. 

5) Similar approach may be used in the other domains of materials science analysis where the normality 
assumptions is rather weakly met e.g. embedded systems [32], piezoelectric actuators [33-34], conical 
shells [35] and specific properties of designed materials [36-39]. 
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