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Abstract 

Fracture surfaces of X70 steel DWTT broken samples are analysed using new surface evaluation concept. 
The presented approach is an alternative to an expert determining a ratio between the ductile and brittle 
fracture area. The analysed data source, i.e. �,   and ! coordinates of points of fracture surface, comes from 
3D scan using Limess Measurement Technique. Beside formerly used fractal geometry approach, new 
concept based on normal vector characteristics is used. The fracture surface net is generated by triangulation 
of points of fracture surface. For every triangle, the normal vector is computed. Thereafter, normal vector 
characteristics are clustered via k-means++ clustering algorithm. Application of the algorithm improves the 
correct detection of the brittle and ductile fractures significantly, so that the achieved clusters highly correspond 
to the real distribution of the ductile and brittle fracture areas on DWTT surface. Furthermore, applied methods 
are computationally very fast, so that it is possible to apply them for the scans with considerably higher 
magnitude. The correctness of the final cluster results are evaluated comparing with the real displacement of 
the brittle and ductile fracture, and by using various theoretical approaches.  
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1. INTRODUCTION 

The correct identification of the fracture surfaces is very important for an evaluation of fracture resistance. 
Nowadays, there are many mechanical tests for determining a fracture resistance, e. g. Charpy V-notch test 
or Drop Weight Tear Test (DWTT) [6]. In our paper, a fracture surfaces of the broken DWTT specimens are 
studied using commercially produced samples of API 5L X-70 sheet steel with thickness 18.7 mm. 

After realizing DWTT, the tested surface is evaluated by an expert, who evaluates a ratio between a ductile 
and brittle fracture. Analysis by a specialist has many advantages, however, amount of human error is also 
incorporated. In some cases, expert opinions may vary significantly, see [7]. Alternative to an expert evaluation 
is realizing 3D scan. The fracture surfaces were scanned by 3D camera using Limess Measurement. 

The aim of this paper is to present an alternative method of the fracture surface evaluation. To determine 
displacement of the brittle and ductile fracture various normal vector characteristics are used. The Normal 
vector characteristics are an alternative approach to the fractal geometry concept, which is often used in 
fracture surface characterization [2]. However, normal vector characteristics compare to fractal dimension 
evaluates fracture area in certain place see [11]. 

The displacement of normal vector characteristics well corresponds to the real displacement of the ductile and 
brittle fracture areas. Normal vector outputs can be greatly improved applying appropriate techniques. Dividing 
normal vector characteristics to a ductile and brittle fracture can be seen as clustering problem. In this sense, 
we will apply k-means++ algorithm [1]. The k-means++ algorithm seems to be the best choice of all Lloyd type 
algorithms for the presented problem see [10]. Final clustering results are compared with the real ductile and 
brittle fracture displacement. Furthermore, the various clustering criterions are taken into account [3].  
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2. INVESTIGATED MATERIALS AND METHODS 

2.1. DWTT specimens  

The fracture surfaces of the broken DWTT specimens are studied using samples from commercially produced 
API 5 L X-70 sheets Cr-Mn steel with thickness of 18.7 mm. The steel was austenitized at 1200°C, rolled with 
an initial temperature of 985°C, and final rolling temperature of 832°C. It was then water-cooled from 800°C to 
465° at 9.1 °C/s. Basic mechanical properties of the steel at 20°C were determined by tensile testing on 
standard specimens with a circular cross-section of diameter 4 mm at deformation speed  
0.008 s- 1. The yield strength Rp0.2 > 485 MPa and the tensile strength Rm > 570 MPa. 

The proposed methods of evaluating the ductile fracture percentage (i.e. the percentage of the fracture surface 
displaying ductile fracture) were tested on ten DWTT specimens with dimensions 300 x 76 mm and with the 
same thickness as the sheet steel (18.7 mm). The specimens were press-notched to a depth of 5.1 mm. All 
DWTT specimens were tested at -20°C. The DWTT specimens were broken by a falling weight of 800 kg on 
Drop Weight Tester 40 apparatus. Fracture surface of broken DWTT specimen of investigated API 5L X-70 
steel at -20°C is given in Figure 1.  

The DWTT specimen fracture surfaces were photographed using 3D camera produced by Limess 
Measurement Technique and Software. 3D camera projects straight lines into DWTT specimen and 
photographs deformed image of the lines. After using the projection, the real surface is represented by discrete 
points recorded in their �,   and ! coordinates. The scan was not realized with high magnification, so that the 
specimen is represented with approximately 50 000 points. Computer surface visualization is presented in the 
Figure 2. 

 

Figure 1 DWTT surface specimen 

 

Figure 2 DWTT surface visualization 

2.2. Normal vector characteristics 

To determine normal vectors, the fracture surface is covered with the net of triangles. The vertices of triangle 
correspond to real measurements of the fracture surface. To create the triangle net, the Delaunay triangulation 
was used, see [4]. The Delaunay triangulation maximizes the lower angle of each triangle, so that the final 
triangulation contents as regular as possible triangles. For every triangle, the unit vector perpendicular to the 
triangle (normal vector) is calculated. Total amount of normal vector is over 100 000 values (greater than 
former data source). Every normal vector is placed to the centre of gravity of the appropriate triangle for 
purposes of data visualization.  
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For an every (unit) vector, we will use the length of its   , ! component. The components describe how much 

is the surface tilted in the �,  , ! directions. Furthermore we will consider changes of �,    and ! components 
of two neighbouring vectors with the greatest angle deviation. For given normal vector #$  =  ( �$  ,  $ , !$  ) related 

to the centre of gravity %$  = ( �$
& ,  $

&  , !$
&) of the triangle Δ$, we take into account �$  ,  $  , !$. For every fixed *, we 

chose a neighbour Δ+ of the triangle Δ$ with a maximal angular deviation of related normal vectors; so that we 

compute absolute differences of the change of vector component  
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Let us summarize, that every triangle with the centre of gravity �� is evaluated with three values normal vector 

components  � , !�, "�  and absolute difference #�
$ , #�

%
, #�

& . 

2.3. K-means clustering 

The k-means is a well-known clustering algorithm. It divides the data set ' ⊂ ℝ* to + clusters -., … , -/, so 

every  ∈ ' belongs to the cluster -� with the nearest center 1�. The k-means solves the problem of minimizing 

the potential function 2 

ϕ =  ∑ ∑ ‖ − 1�‖89∈:$∈;
<           (2) 

with respect to -. 

Principally the problem of minimizing the potential function can hardly be solved by finding the best solution 
from all possible realizations. K-means solve the (2) in finding suboptimal solution with respect to the choice 
of initial centres (or clusters). The basic procedure of the algorithm can be described in the following way: 

• Choose + initial centres {1., 1<, … , 1/}. 

• Assign each observation   to the cluster (1, … , +) with the “nearest” center. 

• Set new centre as a mean (for Euclidean metric) of every cluster. 

• Repeat previous two steps until no cluster -� changes.  

The results of the k-means depend on an initial choice of centres. We use the k-means++ variant, where the 
initial centres are achieved using weighted probability, see [1]. Since the algorithm achieves a local minimum 
of potential function, we use 10x repeat of the algorithm choosing the solution with the smallest value of 
potential function.  

One of the disadvantages of the K-means is the fact, that it does not optimize an amount of the clusters. There 
are many criteria and approaches to find the best amount of the clusters for the given problem. In the presented 
paper we use Calinski-Harabasz (CHI) [3] and Davies-Bouldin (DBI) [5] indexes. Both criterions compare 
within-cluster and between-cluster distances. We choose a number of clusters with the highest CHI and with 
the lowest DBI criterion. 

3. RESULTS AND DISCUSSIONS 

In this section, we discuss the achieved results of our approach for the detections of the brittle and ductile 
fracture types, which is presented in the sections above.  

In Table 1, the evaluation indices of the Calinski-Harabasz and Davies-Bouldin criterions are presented.The 

best result in k-means clustering for normal vector components can be achieved in case of two clusters -
according to CHI and four clusters according to DBI. In Figure 2, the result of k-means clustering with two 

clusters is visualized. In this case, the orange cluster represents the ductile fracture area and the light grey 
represents the brittle fracture area. The four clusters results are presented in the Figure 4. In this case the 

orange cluster corresponds to the ductile fracture area. The brittle fracture is represented with two colours light 
grey (central part) and red (right part of the specimen). The notch is represented with light red colour. Some 
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inaccuracies are seen at the borders of the fracture surface and at the high plastic deformation area (down on 
the left side). 

According CHI and DBI criterions, the best result for (absolute) normal vector differences can be achieved 
using two clusters. The result is presented in the Figure 5. The orange cluster corresponds to the ductile 

fracture area. The light grey corresponds to the brittle fracture area. Compare to results of normal vector 
components the differences clustering are loaded with more inaccuracies. The greatest error in the ductile 
identification is in the central part of the specimen. Other inaccuracies can be seen on the left part of the 
specimen in the area of high plastic deformation (according to the [8]). In the other hand, application of 
differences is much more useful in the fracture edge detection. (the edges almost behaves as a border between 
ductile and brittle fracture).  

Table 1 Evaluation of k-means++ results by Calinski-Harabasz and Davies-Bouldin 

 Normal vector components Normal vector differences 

Number of clusters CHI DBI CHI DBI 

2 1.2263e+05 0.8612 1.4096e+03 7.3484 

3 1.0801e+05 0.9642 686.6759 12.2589 

4 1.0809e+05 0.8518 671.5789 10.7777 

5 1.0406e+05 0.9652 679.5739 13.1723 

6 9.8080e+04 0.8805 672.8802 12.8600 

7 9.5414e+04 0.9089 560.1891 13.7480 

8 9.4063e+04 0.9213 478.6658 15.0935 

9 9.2936e+04 0.9215 441.1130 14.8978 

 
Figure 3 Clustering of normal vector components characteristics (2 clusters) 

 
Figure 4 Clustering of normal vector components characteristics (4 clusters) 
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Figure 5 Clustering of normal vector differences characteristics (2 clusters) 

4. CONCLUSSIONS 

A detailed quantitative fractographic analysis of fracture surfaces of X70 steel DWTT specimens was 
presented in order to investigate new possible ways of evaluating its character, especially the ductile fracture 
percentage, independent to individual observation. The fracture area was evaluated with three normal vector 
components and three absolute differences. Thereafter the characteristics were processed with k-means++ 
algorithm. The achieved results highly correspond to the real displacement of the brittle and ductile fracture 
area. However, some inaccuracies also occur. Both normal vector components and differences are useful tool 
for fracture surface characterization. The vector components results are more accurate in some areas of the 
ductile fracture area in general. The absolute differences are further more effective in edge identification. 

Very promising result was achieved applying a simple k-means++ clustering algorithm. The advantage of the 
k-means++ is the high computational effectiveness. The algorithm can be applied on considerably bigger data 
source (approximately few millions of values for common PC). The specification of the algorithm is that it comes 
from the family of unsupervised learning algorithms. It is no need to choose the area with pure brittle and 
ductile fracture area e. g. training sets in case of supervised Machine learning methods before the start of the 
algorithm. In further research, we aim to compare the k-means++ with supervised machine learning methods, 
e. g. support vector machines or neural network approaches.  

ACKNOWLEDGEMENTS   

This paper was an output of the project CZ.1.05/2.1.00/01.0040 "Regional Materials Science and 

Technology Centre - research activity New sources of strength and toughness of materials for high 

technological applications" as part of the Operational Programme "Research and Development for 

Innovations" financed by EU Structural Funds and from the state budget of the Czech Republic. The 

financial support of the Technology Agency of the Czech Republic under grant no. TA 02011179, 

Czech science foundation (GACR) project no. 15-18274S are gratefully acknowledged. 

REFERENCES 

[1] ARTHUR, D., VASSILVITSKII, S. K-means++: the advantages of careful seeding, in: SODA 2007: Proceedings of 
the 18th annual ACM-SIAM symposium on Discrete algorithms. Philadelphia: SOCIETY FOR INDUSTRIAL AND 
APPLIED MATHEMATICS PHILADELPHIA, 2014, pp. 1027-1035.  

[2] BALANKIN, A. Fractal Properties of Fracture Surfaces in Steel 1045. International Journal of Fracture, 2000, vol. 
106, no. 2, pp 21-26. 

[3] CALINSKI, T., J. HARABASZ, A dendrite method for cluster analysis, Communications in Statistics-theory and 
Methods, 1974 vol. 3, no. 1, pp.: 1-27. 

[4] CHEONG, O., KREVELD, M., OVERMARS, M., Computational Geometry: Algorithms and Applications. 2nd ed., 
London: Springer, 2008, 380 p. 

[5] DAVIES, D. L., BOULDIN, D. W., A cluster separation measure, IEEE transactions on pattern analysis and 
machine intelligence, 1979, vol 2, no. 1, pp. 224-227. 



May 24th -  26th 2017, Brno, Czech Republic, EU 

 

 

594 

[6] FANG, J., ZHANG, J. Evaluation of cracking behaviour and critical CTOA values of pipeline steel from DWTT 
specimens. Engineering Fracture Mechanics, 2014, vol. 124-125, no. 12, pp. 18-29.  

[7] HORSLEY, D Background to the use of CTOA for prediction of dynamic ductile fracture arrest in pipelines. 
Engineering Fracture Mechanics, 2003, vol. 70, no.3-4, pp. 547-552. 

[8] HWANG, B., LEE, S. Analysis of abnormal fracture occurring during drop-weight tear test of high-toughness line-
pipe steel. Material Science Engineering, 2004, vol. 368, no. 1-2, pp. 18-27.  

[9] MENGJIA, X., JIJIN, X. Fractal and probability analysis of creep crack growth behaviour in 2.25Cr-1.6W steel 
incorporating residual stresses. Applied Surface Science, 2015, vol. 359, no. 4, pp. 73-81.  

[10] PECHA, M., SKALNY, P. Identifying the Ductile Fracture in Steel Materials via Lloyd Type Algorithms, In Pareng 
2017: Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for 
Engineering,Pécs, Civil-Comp Press, 2017 (accepted). 

[11] P. SKALNY, Evaluation and Identifying the Ductile Fracture Area of X70 Steel from DWTT Broken Specimens, In 
ECF 21: 21st European conference on Fracture, Cataneo: PROCEDIA STRUCTURAL INTEGRITY, 2016, pp.: 
3727-3734. 

[12] STRNADEL, B., HASEGAWA, K., SKALNÝ, P., Evaluation of Cracking Behaviour of Pipeline X70 Steel From 
DWTT Broken Specimens In METAL 2015: 24rd International Conference on Metallurgy and Materials., Brno: 
TANGER, 2015, pp. 128-133. 

[13] STRNADEL, B., FERFECKI, P.; ZIDLIK, P. Statistical characteristics of fracture surfaces in high-strength steel 
drop weight tear test specimens. Engineering Fracture Mechanics, 2013, vol. 112, no.6, pp. 1-13. 

[14] YANG, Z., KIM, CHB., FENG, Y., CHO, CH., 2008. Abnormal fracture appearance in drop-weight tear test 
specimens of pipeline steel. Material Science Engineering, 2008, vol 483, no. 11, pp. 239-241. 


