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Abstract 

In the paper there are presented preliminary results of microwelding thin sheet of superalloys Hastelloy X and 
Haynes 230®. The studies determined the basic parameters of microwelding superalloys thin sheet. In this 
paper, welding connections of examined superalloys free from cracking was obtained and its microstructural 
growth characteristic was investigated. Welding of thin metal sheet was made by resistive pulse microwelding 
with use of a SST WS 7000s device. The study focused on the leading investigated parameters such as 
microhardness and the obtained weld microstructure observation. Microhardness measurements of the joints 
were taken using Matsuzawa Vickers MX 100 type with applied load 100 g (0.98 N). The joints were examined 
using metallographic microscope Nikon Eclipse MA200. The survey indicates that although many studies have 
been performed, there is still a considerable need to further examine how to obtain satisfying quality joint, 
using micro welding between the thin sheet from superalloy Hastelloy X and Haynes 230®. 
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1. INTRODUCTION 

Microwelding resistive-pulse technique [1-4] is a thermo-electric process in which heat is generated at the 
interface of the parts to be joined by passing an electrical current through the parts for a precisely controlled 
time and under a controlled pressure also called force. The microwelding is often included in the "non-
traditional" or "non-conventional" group of machining methods together with processes such as 
electrochemical machining (ECM), water jet cutting (AWJ) [5], laser cutting [6, 7], Electrical Discharge 
Machining (EDM) [8-11], hybrid machining [12] or nonconventional welding processes [13-16] and opposite to 
the "conventional" group turning, milling, grinding, drilling etc. Microwelding is used where due to the small 
size of the deposition areas conventional welding techniques are excluded of use. Microwelding resistive-pulse 
technique allows for a significant increase in scope of repairs arising comparing to traditional methods of 
regeneration [17-19]. Nowadays, achieved by modern equipment for microwelding current voltage parameters 
indicate the possibility of producing connections of elements made of Ni-based called superalloys. In the 
available literature, the authors frequently shall take the study of Superalloys thin sheet connections made by 
various microwelding methods [19, 20].  

The paper is focused on microwelding effects as a "non-conventional" machining methods of superalloys, 
having wide application in aerospace and energy industry. The aim of research is to study the effects of spot 
welding on thin sheet superalloys (Hastelloy X and Haynes 230®). 

2. EQUIPMENT AND MATERIAL 

The spot welding were made using the device to microwelding WS 7000 S from SST France & Vision 
Lasertechnik. This machine welding generates pulses with an average frequency of 5000 Hz. The welding 
parameters are summarized in Table 1. 
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Table 1 Microwelder SST WS 7000s - Characteristics [21] 

Parameter  Characteristics  

Supply  ~220V/50Hz  

Type of converter  Medium frequency 5 kHz  

Maximum welding power  10 kW  

No load voltage U20  3.6 V  

Type of control  Current Regulation  

Welding time  1 - 250 ms  

Current accuracy  8 A  

Maximum impulse speed  16  

Maximum welding capacity  1 / 0.3  

Adjustable parameters  - Welding amperage in %  
- Welding time in ms  
- Single impulse / multi impulse welding cycle  
- Form of impulse (powder / wire - sheet)  

The spot welding of thin sheet of superalloys Hastelloy X and Haynes 230® were obtained used following 
parameters:  

• the applied welding amperage in the range of 50-70% of the power device (max. 7000 A);  

• welding time 10 ms;  

• form of impulse: wire-ribbon;  

• duty cycle: multi impulse welding cycle. 

In this work were studied the nickel-chromium-molybdenum alloy Hastelloy X and the nickel-chromium-
tungsten alloy Haynes 230®, produced by Haynes International whose compositions are given, respectively, 
in Table 2 and Table 3. Both alloys were delivered by thin rolled sheet form. Before the welding process thin 
sheets was degreased and oxides were removed with sandpaper. 

Table 2 Composition (in wt.%) of Hastelloy X [22] 

 Ni  Cr  Fe  Mo  Co  W  C  Mn  Si  B 

Min. 47.0 22.0  18.0  9.0  1.5  0.6  0.10  1.0 1.0 0.008 

Table 3 Composition (in wt.%) of Haynes 230® [23] 

 Ni  Cr  W  Mo  Co  Al  La  Mn  C  Si  

Min. 47.0  20.0 13.0  1.0  -  0.20  0.005  0.3  0.05  0.25  

3. WELD MICROSTRUCTURE 

To illustrate structures of the joints we used the metallographic microscope Nikon Eclipse MA200 with the 
image analysis system NIS 4.20. During the preparation process for the thin sheet joint were cut across the 
weld and mounted in resin. After proper polishing and electrolytically etching in oxalic acid (2%), the weld 
structure was subjected to observation. Different zones of different microstructures characterize welded 
samples: base metals (BM), heat affected zones (HAZ), and fusion zone (FZ). HAZ has an average width in 
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the range of several μm, which is typical of the welding techniques used. The samples show a larger FZ width 
in the sheet closer to the pulse source. Instead, HAZ has a small width in both joined sheets. In all welded 
joints examined, the FZ is characterized by small columnar-shaped grains. The upper sheet there was re-
melted through. In the middle fusion zone there are tiny equiaxed grains. 

a)  b)  

Figure 1 Microphotography of weld structure; welding amperage 50% 

a)  b)  

Figure 2 Microphotography of weld structure; welding amperage 60% 

a)  b)  

Figure 3 Microphotography of weld structure; welding amperage 70% 
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4. MICROHARDNESS OF MICROWELDED JOINTS 

Microhardness tests were carried out by using a Vickers indenter, with an applied load of 0.98 N for 15 s. For 
investigation there was used Matsuzawa Vickers microhardness MX 100 type.  

5. RESULTS AND DISCUSSION 

Figure 1 shows an examples of the micrographs etched cut cross-sections of welded joints at 50% amperage. 
Because of the low welding parameters, no melted zone was achieved. Connections are typical for spot 
welding. Figure 2 shows an example of OM micrographs etched cut cross-sections of welded joints at 60% 
amperage. The observed connection is similar to that obtained with lower parameters. However, the zone with 
clearly visible column crystals was noticed. This zone didn’t reach the connection zone. Only the connection 
obtained at 70% amperage for the used device, allowed the connection to be melted, Figure 3. Different zones 

of different microstructures characterize the welded sample: base material (BM), heat affected zone (HAZ), 
and fusion zone (FZ). HAZ has an average width of several μm, typical for used welding techniques [24, 25, 
26]. Generally in the examined samples, a larger FZ width is observed in the sheet closer to the pulses source 
(see upper section in the figures). Instead, HAZ has almost the same width in the top and bottom. FZ is 
characterized by a small column-shaped grain in the test weld. The upper sheet has been melted down. In the 
middle zone of FZ there are tiny uniform grains. Microhardness measurements show that in the place where 
the it should be the smallest due to the longest heat transfer, the maximum value has been achieved. The 
"soft" weld microstructure can be explained by slower cooling rate in the welding material, caused by the 
special geometry of the microweld. Similar phenomena were observed for other welded materials using the 
described method [27, 28, 29]. On the surface of the top sheet at the contact point - connection between the 
upper and lower plate separates the greatest increase of heat due to electrical pulses flow. In fact, during 
welding, the heat remains trapped inside the weld, and then for a longer time it gives a higher temperature, 
with reduced cooling rate on the microwelded material. The hardness values varied depending on the position 
in the coupling area. This is due to the change of the structure of the materials when exposed to an electric 
pulse during welding. The hardness of BZ was 232 - 295 HV FZ was 267-360 HV. The measurement of 
hardness in the HAZ was not possible because of its small width. In all types of structures in FZ, the hardness 
of the microstructure increases as a result of more difficult microstructures caused by melting, followed by 
rapid cooling during welding, and which have been observed in previous metallurgical investigations. In some 
of the analyzed samples, the microhardness seemed to increase toward the center of FZ, and decreasing at 
the edges. There were no fractures in FZ or HAZ - but such cracks are often reported by other researchers 
using other welding techniques such as Laser Beam Welding or TIG welding [30, 31]. 

6. CONCLUSION 

The paper presents the microstructural and mechanical characteristics of microweldet thin sheets of Haynes 
230 and Hastalloy X. Welded samples were tested with a linear welding bead. The characteristics were based 
on metallographic observations, and microhardness measurements. The main findings of this study can be 
summarized as follows: 

• the proper microstructure connection was obtained with sufficiently high power parameters.  

• the microhardenal profiles in all tested joints confirmed an increase in hardness in the weld zone and 
superheated zone.  

• no cracks were found in the area of the weld and heat affected zones. 

This means that the total joint strength is controlled by the strength of the base metal (BM), which is consistent 
with full penetration welding zone characterized by higher microhardness (and therefore higher static strength) 
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comparing to the base metal. The aim of work to research the effects of spot welding on thin sheet superalloys 
(Hastelloy X and Haynes 230®) was achieved. 
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