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Abstract 

Experimental and theoretical investigation of temperatures of phase transformations (temperature of liquidus 

TL, temperature of peritectic transformation TP, temperature of solidus TS, temperature of the end of α→γ 
transformation Ac3, and temperature of the start of eutectoid transformation Ac1) of these alloys were 
experimentally measured. All investigated temperatures were also calculated by Thermo-Calc software.  

Comparison of measured and calculated temperatures of phase transformations was performed and good 
agreement was found for temperatures of liquidus and solidus. Discussion of identified differences between 
measured and calculated temperatures was also done.  
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1. INTRODUCTION  

It is well-known, that chromium has significant effect onto properties of Fe-C based alloys/steels [1, 2]. 
Temperature of liquidus TL decreases with increasing amount of Cr [3] while temperature of solidus slightly 
decrease with increasing amount of Cr [4]. Chromium also has influence on the stability of retained austenite 

[5] and formation of intermetallic phases [6], so temperatures connected with α→γ transformation have to be 
also affected by this element.  

Investigated quantities can be measured using thermal analysis methods. One of the most commonly used 
methods is Differential thermal analysis (DTA) [8]. Another commonly used method is Differential scanning 
calorimetry (DSC) [9].  

Properties of Fe-C alloys/steels are nowadays often calculated using different software (i.e. Thermo-Calc [10], 
FactSage [11], CompuTherm [12]). Quality of theoretical results often depends on the settings of calculations 
[13], so for the best quality of theoretical calculations is necessary to use all the possibilities of the software 
settings.  

In this paper, the DTA method was used for investigation of temperature of liquidus TL, temperature of peritectic 

transformation TP, temperature of solidus TS, temperature of the end of α→γ transformation Ac3 and 
temperature of the start of eutectoid transformation Ac1. All temperatures were also calculated using Thermo-
Calc software with TCFE8 (Thermo-Calc Fe-based alloys) database. 

2. EXPERIMENTAL  

Chemical composition of investigated Fe-C based alloys is in Table 1. Samples were ground up and washed 
in acetone under ultrasound before measurement. Measurements were done under inert atmosphere of pure 
argon (6N). All experimental values in this paper were obtained from heating runs and all experimental 
measurements were done three times for statistical purpose.  
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Table 1 Chemical composition of Fe-C based alloys (wt. %) 

Sample C Cr Mn Si S Cu Ni 

1 0.270 0.738 1.148 0.233 0.004 0.075 0.032 

2 0.284 0.614 0.790 0.208 0.009 0.068 0.029 

3 0.252 0.940 0.360 0.295 0.002 0.070 0.030 

Temperatures of phase transformations were measured using the Setaram SETSYS 18TM device (Figure 1). 
Heating rate was set to 10 °C·min-1 for measurements in high-temperature area (temperatures of liquidus TL, 
peritectic transformation TP and solidus TS).  

 

Figure 1 Setaram SETSYS 18TM device. 

For low-temperature area (temperatures of the end of α→γ transformation Ac3, and temperature of the start of 
eutectoid transformation Ac1) was heating rate set to 5 °C·min-1. Temperature calibration was made using pure 
metals (Pd and Al). Temperature of liquidus TL was also calibrated to experimental conditions (i.e. sample 
mass, heating rate) according to [14].  

3. CALCULATIONS  

Calculation were performed using the Thermo-Calc software with TCFE8 (Thermo-Calc Fe-based alloys) 
database [15]. This software based on the CALPHAD approach allows many settings of calculations. In this 
paper, full chemical composition and all phases (except for graphite and diamond) were allowed.  

4. RESULTS AND DISCUSSION 

4.1. Melting area 

All three temperatures of phase transformations in the melting area (TL, TP and TS) decrease with increasing 
amount of Cr [16]. Temperatures of liquidus TL and solidus TS also decrease with increasing amount of Mn 
[17]. Moreover, temperatures of liquidus and solidus decrease with increasing amount of carbon [18].  
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Table 2 shows experimentally and theoretically obtained temperatures of phase transformations in the melting 
area (temperature of liquidus TL, temperature of peritectic transformation TP and temperature of solidus TS) for 
all three investigated samples.  

Table 2 Temperatures of liquidus TL, peritectic transformation TP and solidus TS (°C) 

Sample 
TL TP TS 

Experimental Calculated Experimental Calculated Experimental Calculated 

1 1500 ± 1 1506 1491 ± 1 1487 1446 ± 5 1456 

2 1500 ± 1 1506 1491 ± 1 1488 1449 ± 4 1447 

3 1506± 4 1508 1476 ± 6 1477 1464 ± 5 1435 

Calculated temperatures of liquidus TL are in very good agreement with experimental values; difference is up 
to 6 °C for all three samples. Samples 1 and 2 have same experimental TL (1500 ± 1 °C) and Thermo-Calc 
also calculated same value of TL (1506 °C). Sample 3 has a little bit higher experimental TL than for samples 
1 and 2 and calculated TL is a bit lower than for samples 1 and 2, too.  

Samples 1 and 2 have same experimental TP (1491 ± 1 °C), but sample 3 has significantly lower experimental 
TP (1476 ± 0 °C). Sample 3 has higher amount of Cr (0.94 wt. %) than samples 1 and 2 (0.738 wt. % and 0.614 
wt. %, respectively), so this should be the cause of lower values of TP. Calculated values of TP of all three 
investigated samples are in very good agreement with experimental values of TP, difference is up to 4 °C.  

Experimental and calculated TS are in good agreement for samples 1 and 2 (difference is up to 10 °C). For 
sample 3, calculated temperature of solidus is 29 °C lower than measured value. This could be caused by the 
highest amount of Cr and/or the lowest amount of Mn.  

4.2. Area of α→γ transformation 

Both investigated temperatures (Ac3 and Ac1) decrease with the amounts of Cr [19] and also Mn [20]. According 
to obtained (experimental and theoretical) values of Ac3 and Ac1, it looks like the amount of Mn has higher 
impact on the shift of both temperatures than the amount of Cr.  

Table 3 shows calculated and measured temperatures of phase transformations in the area of α→γ 
transformation (Ac3 and Ac1) of all three investigated samples.  

Table 3 Temperature of the end of α→γ transformation Ac3, and temperature of the start of eutectoid  
     transformation Ac1 (°C) 

Sample 
Ac3 Ac1 

Experimental Calculated Experimental Calculated 

1 813 ± 1 793 756 ± 0 710 

2 811 ± 1 800 748 ± 0 720 

3 849 ± 1 832 776 ± 1 744 

All calculated values of Ac3 and Ac1 temperatures are lower than corresponding experimental values. The 
difference between measured and calculated values of Ac3 is cca 15 °C and the difference between measured 
and calculated values of Ac1 is cca 30 °C 

This could be caused by the calculations in the equilibrium state (Thermo-Calc does not allow calculations in 
non-equilibrium state). All phases (except for graphite and diamond) were allowed for calculations, so it is 
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possible, that samples contain different minor phase (phases) than those determined by Thermo-Calc software 
(i.e. M23C6, M7C3).  

Experimental values of Ac1 were set to extrapolated onset of peak and this onset depends on the heating rate 
[21], so this should be also one of the reasons for lower agreement between experimental and theoretical 
values of Ac1.  

5. CONCLUSIONS 

All calculated temperatures of phase transformations in the melting area (temperature of liquidus TL, temperature of 
peritectic transformation TP and temperature of solidus TS) are in very good agreement with measured values, except 
for one value of TS. Difference between values is up to 6 °C for temperatures of liquidus, 4 °C for temperatures of 
peritectic transformation and 10 °C (respective 29 °C) for temperatures of solidus.  

Calculated temperatures of phase transformation in the area of α→γ transformation (temperature of the end of 

α→γ transformation Ac3 and temperature of the start of eutectoid transformation Ac1) are significantly lower 

than experimental values. Calculated temperatures Ac3 are 11-20 °C below experimental values and 
calculated temperatures Ac1 are 28-46 °C below experimental values. 

Based on the performed experiments, it appears that Mn has higher influence on all investigated temperatures of 
phase transformation (TL, TP, TS, Ac3 and Ac1) than Cr. 
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